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INTRODUCTION TO A-LEVEL MATHS AT GCH 

Thank you for choosing to study mathematics at The Grey Coat Hospital. The Mathematics 

Department is committed to ensuring that you make good progress throughout your A-

level course. To ensure that you have the strongest possible start in September, we have 

prepared this workbook and recommend that you work through it during your summer 

holidays. You should have covered all of these topics during your studies at GCSE and 

they are treated as assumed knowledge at A-Level (this means we assume you have a good 

understanding of them and will quickly build on and deepen this understanding). 

 

Please ensure that you are regularly dedicating time over the holidays to complete this 

workbook and that you don’t just leave it until the last few days. Three months is a long 

time to go without any mathematics and you will quickly notice that things you were able 

to do easily during your GCSEs (like factorising when 𝑎 > 1 or using the cosine rule) are a 

significantly more challenging after an extended break.  

 

By the first lesson in September, you will need to have completed the entire workbook. 

This will involve keeping all of your work organised in either an exercise book or a folder, 

completing all of the “Practice” questions (and ideally some of the “Extend” questions) 

and marking all of your work with a green pen using the answers at the end of each section. 

 

In the second week of term, you will take a test focusing on the content of this workbook 

to determine your strengths, weaknesses and suitability for the course. If it is clear that 

there are large gaps in your pre-requisite GCSE knowledge then you will be required to 

attend Maths Clinic and sit an additional test at a later date. We have included a practice 

test (and answers) at the end of this workbook to help you prepare for this baseline 

assessment.  

 

We hope that you will use this introduction to give you a good start to Year 12 and that it 

will help you to enjoy, and benefit from, the course. The more effort you put in, right from 

the start, the better you will do.  

 

We have also included a reading list in case some of you find you are missing learning 

about Maths over the break! Enjoy! 

 

Ms Lescrooge (Head of A-Level Maths)  



Assistance with workbook 

The following YouTube channels have clear explanations on most of these transition 

topics, should you require them: 

Hegarty Maths: Getting Ready for A-Level Maths 

Adams Maths: GCSE Revision Videos 

Preston Maths: Transition from GCSE to A-Level 

 

You may also find the following book useful  

Head Start to A-Level Maths 

Published by CGP Workbooks  

ISBN: 978 178 294 7929 

Buying the textbook through https://www.cgpbooks.co.uk/ gives free access to the 

online edition. Alternatively you can buy the standalone online edition which gives you 

immediate access after purchasing 

 

 

 

Reading List  

We strongly recommend the books on the list to keep you entertained over the summer! 

 

Everyday Mathematics 

The Art of Logic in an Illogical World by Eugenia Cheng 

The Tiger That Isn't: Seeing Through a World of Numbers by Andrew Dilnot and Michael 

Blastland 

Hello World: How to be Human in the Age of the Machine by Hannah Fry 

 

Popular Mathematics 

Alex’s Adventures in Numberland by Alex Bellos 

Finding Moonshine: A Mathematician's Journey Through Symmetry by Marcus Du Sautoy 

The Num8er My5teries by Marcus du Sautoy  

How Many Socks Make a Pair? Surprisingly Interesting Maths by Rob Eastway  

Why Do Buses Come in Threes? The Hidden Mathematics of Everyday Life by Rob 

Eastaway & Jeremy Wyndham 

  

https://www.youtube.com/playlist?list=PLxHVbxhSvleR5tntP2FxYBJCoY5-pD_Z8
https://www.youtube.com/playlist?list=PLhfTFUpngHaXhpAuqCFkHgmqVf7l4zc1a
https://www.youtube.com/@prestonmathshq1663/playlists
https://www.cgpbooks.co.uk/


The Indisputable Existence of Santa Clause by Hannah Fry 

Mathematics Magic and Mystery by Martin Gardner 

Fermat's Last Theorem: The Story of A Riddle That Confounded The World's Greatest 

Minds For 358 Years   by Simon Singh 

The Code Book by Simon Singh 

The Simpsons and Their Mathematical Secrets by Simon Singh 

Professor Stewart's Cabinet of Mathematical Curiosities by Ian Stewart 

Seventeen Equations that Changed the World by Ian Stewart 

The Penguin Dictionary of Curious & Interesting Numbers by David Wells 

 

History of Mathematics 

1089 and All That: A journey into Mathematics by David Acheson 

The Wonder Book of Geometry by David Acheson 

The Calculus Wars by Jason Socrates Bardi  

50 Mathematical Ideas You Really Need to Know by Tony Crilly 

Godel, Escher, Bach: An Eternal Golden Braid by Douglas R Hofstadter 

Timing the Infinite: The Story of Mathematics by Ian Stewart 

 

Mathematical Fiction 

Flatland: A Romance of Many Dimensions by Edwin A. Abbott 

The Curious Incident of the Dog in the Night-time by Mark Haddon  

The Housekeeper and the Professor by Yoko Ogawa 

A Certain Ambiguity: A Mathematical Novel by Gauray Suri & Hartosh Singh Bal 

 

Formal Mathematics 

Mathematics: A Very Short Introduction by Timothy Gowers 

An Introduction to Mathematical Reasoning: Numbers, Sets and Functions by Peter J 

Eccles 

 

Mathematical Journals 

https://plus.maths.org/content/ an excellent online magazine with articles, podcasts 

and puzzles that introduce readers to the beauty and practical applications of 

mathematics 

 

  

https://plus.maths.org/content/


And finally, a few maths jokes to keep you going through the summer 

What did 0 say to 8? 

Nice belt! 

 

How does a ghost solve a quadratic? 

By completing the scare 

 

Why did the mathematical tree fall over? 

Because it had no real roots 

 

One day Jesus was delivering a sermon to his flock. "The path to the Lord lies along  

𝑦 = 𝑥2 − 3𝑥 + 2  

A passer-by leans over to Peter and whispers "What on earth is he talking about?" 

Peter replies "Don't worry, it's just one of his parabolas!" 

 

  



Expected Knowledge from GCSE 

 

1. Expanding brackets and simplifying expressions 

2. Working with surds (including rationalising the denominator) 

3. Indices (including negative and fractional indices) 

4. Factorising expressions (including difference of two squares and quadratics 𝑎𝑥2 +

𝑏𝑥 + 𝑐 where 𝑎 > 0 

5. Completing the square 

6. Solving quadratic equations (with the formula or via factorising) 

7. Sketching quadratic graphs 

8. Solving linear simultaneous equations 

9. Solving non-linear simultaneous equations 

10. Solving linear and quadratic inequalities 

11. Sketching graphs (quadratic, cubic, reciprocal, sine, cosine, tangent) 

12. Transforming graphs 

13. Straight line graphs  

14. Parallel and perpendicular lines 

15. Pythagoras’ Theorem 

16. Proportion (direct and inverse) 

17. Circle theorems 

18. Trigonometry (including sine and cosine rules) 

19. Rearranging equations 

20. Volume and surface area of 3D shapes 

21. Travel Graphs 

22. Representing Data (boxplots, cumulative frequency diagrams, histograms) 

23. Calculating averages (including from a frequency table) 

24. Area under a graph 
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Expanding brackets  

and simplifying expressions 
 

 A LEVEL LINKS 

 Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds 
 

Key points 

 When you expand one set of brackets you must multiply everything inside the bracket by 

what is outside. 

 When you expand two linear expressions, each with two terms of the form ax + b, where 

a ≠ 0 and b ≠ 0, you create four terms. Two of these can usually be simplified by collecting 

like terms. 

Examples 

Example 1 Expand 4(3x − 2) 

4(3x − 2) = 12x − 8 Multiply everything inside the bracket 

by the 4 outside the bracket 
 

Example 2 Expand and simplify 3(x + 5) − 4(2x + 3) 

3(x + 5) − 4(2x + 3) 

 = 3x + 15 − 8x – 12 

 

 = 3 − 5x 

1 Expand each set of brackets 

separately by multiplying (x + 5) by 

3 and (2x + 3) by −4 

2 Simplify by collecting like terms: 

3x − 8x = −5x and 15 − 12 = 3 
 

Example 3 Expand and simplify (x + 3)(x + 2) 

(x + 3)(x + 2) 

 = x(x + 2) + 3(x + 2) 

 = x2 + 2x + 3x + 6 

 = x2 + 5x + 6 

1 Expand the brackets by multiplying 

(x + 2) by x and (x + 2) by 3 

 

2 Simplify by collecting like terms: 

2x + 3x = 5x 
 

Example 4 Expand and simplify (x − 5)(2x + 3) 

(x − 5)(2x + 3) 

 = x(2x + 3) − 5(2x + 3) 

 = 2x2 + 3x − 10x − 15 

 = 2x2 − 7x − 15 

1 Expand the brackets by multiplying 

(2x + 3) by x and (2x + 3) by −5 

 

2 Simplify by collecting like terms: 

3x − 10x = −7x 
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Practice 

1 Expand. 

 a 3(2x − 1) b −2(5pq + 4q2)  

 c −(3xy − 2y2) 

2 Expand and simplify. 

 a 7(3x + 5) + 6(2x – 8) b 8(5p – 2) – 3(4p + 9) 

 c 9(3s + 1) –5(6s – 10) d 2(4x – 3) – (3x + 5) 

3 Expand. 

 a 3x(4x + 8) b 4k(5k2 – 12) 

 c –2h(6h2 + 11h – 5) d –3s(4s2 – 7s + 2) 

4 Expand and simplify. 

 a 3(y2 – 8) – 4(y2 – 5) b 2x(x + 5) + 3x(x – 7) 

 c 4p(2p – 1) – 3p(5p – 2) d 3b(4b – 3) – b(6b – 9) 

5  Expand 
1
2

(2y – 8) 

6 Expand and simplify. 

 a  13 – 2(m + 7) b 5p(p2 + 6p) – 9p(2p – 3) 

7 The diagram shows a rectangle. 

 Write down an expression, in terms of x, for the area of 

the rectangle. 

 Show that the area of the rectangle can be written as 

21x2 – 35x 

8 Expand and simplify. 

 a (x + 4)(x + 5) b (x + 7)(x + 3) 

 c (x + 7)(x – 2) d (x + 5)(x – 5) 

 e (2x + 3)(x – 1) f (3x – 2)(2x + 1) 

 g (5x – 3)(2x – 5) h (3x – 2)(7 + 4x) 

 i (3x + 4y)(5y + 6x) j (x + 5)2   

 k (2x − 7)2 l (4x − 3y)2 

Extend 

9 Expand and simplify (x + 3)² + (x − 4)² 

10 Expand and simplify. 

 a 
1 2

x x
x x


  
  
 


 

  b 

2
1

x
x

 
 
 

   

Watch out! 

When multiplying (or 

dividing) positive and 

negative numbers, if 

the signs are the same 

the answer is ‘+’; if the 

signs are different the 

answer is ‘–’. 
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Answers 

1 a 6x – 3 b –10pq – 8q2
  

 c –3xy + 2y2 

2 a 21x + 35 + 12x – 48 = 33x – 13  

 b 40p – 16 – 12p – 27 = 28p – 43 

 c 27s + 9 – 30s + 50 = –3s + 59 = 59 – 3s  

 d 8x – 6 – 3x – 5 = 5x – 11 

3 a 12x2 + 24x b 20k3 – 48k  

 c 10h – 12h3 – 22h2 d 21s2 – 21s3 – 6s 

4 a –y2 – 4 b 5x2 – 11x  

 c 2p – 7p2 d 6b2 

5 y – 4 

6 a –1 – 2m b 5p3 + 12p2 + 27p 

7 7x(3x – 5) = 21x2 – 35x 

8 a x2 + 9x + 20 b x2 + 10x + 21 

 c x2 + 5x – 14 d x2 – 25 

 e 2x2 + x – 3 f 6x2 – x – 2  

 g 10x2 – 31x + 15 h 12x2 + 13x – 14 

 i 18x2 + 39xy + 20y2 j x2 + 10x + 25 

 k 4x2 − 28x + 49 l 16x2 − 24xy + 9y2 

9 2x2 − 2x + 25 

10 a 
2

2

2
1x

x
    b 

2

2 1
2x

x
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Surds and rationalising the denominator 
 

 A LEVEL LINKS 

 Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds 
 

Key points 

 A surd is the square root of a number that is not a square number,  

for example 2, 3, 5,   etc. 

 Surds can be used to give the exact value for an answer. 

 ab a b    

 
a a

b b
  

 To rationalise the denominator means to remove the surd from the denominator of a fraction. 

 To rationalise
a

b
 you multiply the numerator and denominator by the surd b  

 To rationalise 
a

b c
 you multiply the numerator and denominator by b c  

Examples 

Example 1 Simplify 50  

50 25 2    

 

 

25 2

5 2

5 2

 

 



 

 

1  Choose two numbers that are 

factors of 50. One of the factors 

must be a square number 

2 Use the rule ab a b   

3 Use 25 5  

 

Example 2 Simplify 147 2 12  

147 2 12

49 3 2 4 3



   
 

 

 

 

49 3 2 4 3     

7 3 2 2 3      

7 3 4 3   

3 3  

1 Simplify 147  and 2 12 . Choose 

two numbers that are factors of 147 

and two numbers that are factors of 

12. One of each pair of factors must 

be a square number 

2 Use the rule ab a b   

3 Use 49 7  and 4 2  

 

4 Collect like terms 
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Example 3 Simplify   7 2 7 2   

  7 2 7 2   

= 49 7 2 2 7 4    

 

= 7 – 2 

= 5 

 

1  Expand the brackets. A common 

mistake here is to write  
2

7 49  

 

2 Collect like terms: 

7 2 2 7

         7 2 7 2 0

 

   
 

 
 

 

Example 4 Rationalise 
1

3
 

1

3
 = 

1 3

3 3
  

 

       =
1 3

9


 

 

       = 
3

3
 

1 Multiply the numerator and 

denominator by 3  

2 Use 9 3  

 

Example 5 Rationalise and simplify 
2

12

 

2

12
 = 

2 12

12 12
  

 

       = 
2 4 3

12

 
 

 

 

 

 

       = 
2 2 3

12
 

 

       = 
2 3

6
 

1 Multiply the numerator and 

denominator by 12  

 

2 Simplify 12  in the numerator. 

Choose two numbers that are factors 

of 12. One of the factors must be a 

square number 

 

3 Use the rule ab a b   

4 Use 4 2  

5 Simplify the fraction: 

2

12
 simplifies to 

1

6
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Example 6 Rationalise and simplify 
3

2 5

 

3

2 5
 = 

3 2 5

2 5 2 5




 
 

= 
 

  

3 2 5

2 5 2 5



 
 

= 
6 3 5

4 2 5 2 5 5



  
 

= 
6 3 5

1




 

= 3 5 6  

1 Multiply the numerator and 

denominator by 2 5  

 

 

 

2 Expand the brackets 

 

 

 

3 Simplify the fraction 

 

 

 

4 Divide the numerator by −1 

      Remember to change the sign of all 

terms when dividing by −1 

 

Practice 

1 Simplify. 

 a 45   b 125    

 c 48   d 175   

 e 300   f 28    

 g 72   h 162   

 

2 Simplify. 

 a 72 162   b 45 2 5    

 c 50 8   d 75 48    

 e 2 28 28   f  2 12 12 27     

 

3 Expand and simplify. 

 a  ( 2 3)( 2 3)   b  (3 3)(5 12)    

 c  (4 5)( 45 2)  d  (5 2)(6 8)    

 

Hint 

One of the two 

numbers you 

choose at the start 

must be a square 

number. 

Watch out! 

Check you have 

chosen the highest 

square number at 

the start. 
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4 Rationalise and simplify, if possible. 

 a 
1

5
  b 

1

11
   

 c 
2

7
  d 

2

8
  

 e 
2

2
  f 

5

5
   

 g 
8

24
  h 

5

45
  

5 Rationalise and simplify. 

 a 


1

3 5
 b 



2

4 3
  c 



6

5 2
 

 

 

Extend 

6 Expand and simplify   x y x y   

7 Rationalise and simplify, if possible. 

 a 
1

9 8
 b 

1

x y
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Answers 

1 a 3 5   b 5 5    

 c 4 3   d 5 7   

 e 10 3   f 2 7   

 g 6 2   h 9 2   

2 a 15 2   b 5   

 c 3 2   d 3   

 e 6 7   f 5 3     

3 a −1 b 9 3  

  c 10 5 7   d 26 4 2    

4 a 
5

5
  b 

11

11
  

 c 
2 7

7
  d 

2

2
  

 e 2   f 5    

 g 
3

3
  h 

1

3
  

5 a 
3 5

4
 b 

2(4 3)

13
  c 

6(5 2)

23
  

6 x − y 

7 a 3 2 2  b 




x y

x y
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Rules of indices 
 

 A LEVEL LINKS 

 Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds 
 

Key points 

 am × an = am + n 

 
m

m n

n

a
a

a

   

 (am)n = amn 

 a0 = 1 

 
1

nna a  i.e. the nth root of a 

  
m

m
n m nna a a   

 
1m

m
a

a

    

 The square root of a number produces two solutions, e.g. 16 4  . 

Examples 

Example 1 Evaluate 100 

100 = 1 Any value raised to the power of zero is 

equal to 1 

Example 2 Evaluate 

1

29  

1

29 9  

 = 3 

Use the rule 

1

nna a  

Example 3 Evaluate 

2

327  

 
2

2
3327 27

 

 = 
23  

 = 9 

1 Use the rule  
m

m
nna a  

2 Use 
3 27 3  
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Example 4 Evaluate 
24

 

2

2

1
4

4

 
 

 
1

16
  

1 Use the rule 
1m

m
a

a

   

2 Use 
24 16  

Example 5 Simplify 

5

2

6

2

x

x
 

5

2

6

2

x

x
 = 3x3 6 ÷ 2 = 3 and use the rule 

m
m n

n

a
a

a

  to 

give 
5

5 2 3

2

x
x x

x

   

 

Example 6 Simplify 
3 5

4

x x

x


 

3 5 3 5 8

4 4 4

x x x x

x x x


   

 

 = x8 − 4 = x4 

1 Use the rule m n m na a a    

 

2 Use the rule 
m

m n

n

a
a

a

  

Example 7 Write 
1

3x
 as a single power of x 

11 1

3 3
x

x

  Use the rule 
1 m

m
a

a

 , note that the 

fraction 
1

3
 remains unchanged 

Example 8 Write 
4

x
 as a single power of x 

1
2

1

2

4 4

      4

x x

x






 
1 Use the rule 

1

nna a  

2 Use the rule 
1 m

m
a

a
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Practice 

1 Evaluate. 

 a 140 b 30 c 50 d x0 

2 Evaluate. 

 a 

1

249   b 

1

364  c 

1

3125  d 

1

416  

3 Evaluate. 

 a 

3

225  b 

5

38  c 

3

249  d 

3

416  

4 Evaluate. 

 a 5–2 b 4–3 c 2–5 d 6–2 

5 Simplify. 

 a 
2 3

2

3

2

x x

x


  b 

5

2

10

2

x

x x
  

 c 
3

3

3 2

2

x x

x


 d 

3 2

5

7

14

x y

x y
 

 e 
1
2

2y

y y
 f 

1
2

3
22

c

c c
 

 g 
 

3
2

0

2

4

x

x
 h 

31
2 2

2 3

x x

x x




 

6 Evaluate. 

 a 

1

24


 b 

2

327


 c 

1

329 2


  

 d 

1

3416 2  e 

1

29

16


 
 
 

 f 

2

327

64


 
 
 

 

7 Write the following as a single power of x. 

 a 
1

x
  b 

7

1

x
 c 4 x  

 d 
5 2x  e 

3

1

x
 f 

3 2

1

x
 

  

Watch out! 

Remember that 

any value raised to 

the power of zero 

is 1. This is the 

rule a0 = 1. 
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8 Write the following without negative or fractional powers. 

 a 3x  b x0 c 

1

5x  

 d 

2

5x  e 

1

2x


 f 

3

4x


 

9 Write the following in the form axn. 

 a 5 x  b 
3

2

x
 c 

4

1

3x
 

 d 
2

x
 e 

3

4

x
 f 3 

 

Extend 

10 Write as sums of powers of x. 

 a 
5

2

1x

x


 b 

2 1
x x

x

 
 

 
 c 

4 2

3

1
x x

x
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Answers 

1 a 1 b 1 c 1 d 1 

2 a 7 b 4 c 5 d 2 

3 a 125 b 32 c 343 d 8 

4 a 
1

25
 b 

1

64
 c 

1

32
  d 

1

36
 

5 a 
33

2

x
 b 5x2  

 c 3x d 
22

y

x
 

 e 

1

2y  f c–3  

 g 2x6 h x 

6 a 
1

2
 b 

1

9
 c 

8

3
 

 d 
1

4
 e 

4

3
 f 

16

9
 

7 a x–1 b x–7 c 

1

4x  

 d 

2

5x  e 

1

3x


 f 

2

3x


 

8 a 
3

1

x
 b 1 c 5 x  

 d 
5 2x  e 

1

x
 f 

4 3

1

x
 

9 a 

1

25x  b 2x–3 c 41

3
x  

 d 

1

22x


 e 

1

34x


 f 3x0 

10 a 3 2x x  b 3x x  c 2 7x x   
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Factorising expressions 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants 
 

Key points 

 Factorising an expression is the opposite of expanding the brackets. 

 A quadratic expression is in the form ax2 + bx + c, where a ≠ 0. 

 To factorise a quadratic equation find two numbers whose sum is b and whose product is ac. 

 An expression in the form x2 – y2 is called the difference of two squares. It factorises to 

(x – y)(x + y). 

 

Examples 

Example 1 Factorise 15x2y3 + 9x4y 

15x2y3 + 9x4y = 3x2y(5y2 + 3x2) The highest common factor is 3x2y. 

So take 3x2y outside the brackets and 

then divide each term by 3x2y to find 

the terms in the brackets 

 

Example 2 Factorise 4x2 – 25y2 

4x2 – 25y2  = (2x + 5y)(2x − 5y) This is the difference of two squares as 

the two terms can be written as 

(2x)2 and (5y)2 

 

Example 3 Factorise x2 + 3x – 10 

b = 3, ac = −10 

 

 

So x2 + 3x – 10 = x2 + 5x – 2x – 10 

 

 = x(x + 5) – 2(x + 5) 

 

 = (x + 5)(x – 2) 

1 Work out the two factors of 

ac = −10 which add to give b = 3  

(5 and −2) 

2 Rewrite the b term (3x) using these 

two factors 

3 Factorise the first two terms and the 

last two terms 

4 (x + 5) is a factor of both terms 
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Example 4 Factorise 6x2 − 11x − 10 

b = −11, ac = −60 

 

So  

6x2 − 11x – 10 = 6x2 − 15x + 4x – 10 

 

 = 3x(2x − 5) + 2(2x − 5) 

 

 = (2x – 5)(3x + 2) 

1 Work out the two factors of 

ac = −60 which add to give b = −11 

(−15 and 4) 

2 Rewrite the b term (−11x) using 

these two factors 

3 Factorise the first two terms and the 

last two terms 

4 (2x − 5) is a factor of both terms 

 

Example 5 Simplify 

2

2

4 21

2 9 9

x x

x x

 

 
 

2

2

4 21

2 9 9

x x

x x

 

 
 

 

For the numerator: 

b = −4, ac = −21 

 

So 

x2 − 4x – 21 = x2 − 7x + 3x – 21 

 

 = x(x − 7) + 3(x − 7) 

 

 = (x – 7)(x + 3) 

 

For the denominator: 

b = 9, ac = 18 

 

So  

2x2 + 9x + 9 = 2x2 + 6x + 3x + 9 

 

 = 2x(x + 3) + 3(x + 3) 

 

 = (x + 3)(2x + 3) 

So  
2

2

4 21 ( 7)( 3)

( 3)(2 3)2 9 9

x x x x

x xx x

   


  
 

 = 
7

2 3

x

x




 

1 Factorise the numerator and the 

denominator 

 

 

2 Work out the two factors of 

ac = −21 which add to give b = −4 

(−7 and 3) 

3 Rewrite the b term (−4x) using these 

two factors 

4 Factorise the first two terms and the 

last two terms 

5 (x − 7) is a factor of both terms 

 

6 Work out the two factors of  

ac = 18 which add to give b = 9  

(6 and 3) 

 

7 Rewrite the b term (9x) using these 

two factors 

8 Factorise the first two terms and the 

last two terms 

9 (x + 3) is a factor of both terms 

 

10 (x + 3) is a factor of both the 

numerator and denominator so 

cancels out as a value divided by 

itself is 1 
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Practice 

1 Factorise. 

 a 6x4y3 – 10x3y4 b 21a3b5 + 35a5b2 

 c 25x2y2 – 10x3y2 + 15x2y3 

2 Factorise 

 a x2 + 7x + 12 b x2 + 5x – 14 

 c x2 – 11x + 30 d x2 – 5x – 24 

 e x2 – 7x – 18 f x2 + x –20 

 g x2 – 3x – 40 h x2 + 3x – 28 

3 Factorise 

 a 36x2 – 49y2 b 4x2 – 81y2   

 c 18a2 – 200b2c2 

4 Factorise 

 a 2x2 + x –3 b 6x2 + 17x + 5 

 c 2x2 + 7x + 3 d 9x2 – 15x + 4 

 e 10x2 + 21x + 9  f 12x2 – 38x + 20 

5 Simplify the algebraic fractions. 

 a 
2

2

2 4x x

x x




  b 

2

2

3

2 3

x x

x x



 
 

 c 
2

2

2 8

4

x x

x x

 


 d 

2

2

5

25

x x

x




 

 e 
2

2

12

4

x x

x x

 


 f 

2

2

2 14

2 4 70

x x

x x



 
 

6 Simplify 

 a 
2

2

9 16

3 17 28

x

x x



 
 b 

2

2

2 7 15

3 17 10

x x

x x

 

 
 

 c 
2

2

4 25

10 11 6

x

x x



 
 d 

2

2

6 1

2 7 4

x x

x x

 

 
 

Extend 

7 Simplify 
2 10 25x x   

8 Simplify 
2 2

2

( 2) 3( 2)

4

x x

x

  


  

Hint 

Take the highest 

common factor 

outside the bracket. 
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Answers 

1 a 2x3y3(3x – 5y) b 7a3b2(3b3 + 5a2) 

 c 5x2y2(5 – 2x + 3y) 

2 a (x + 3)(x + 4) b (x + 7)(x – 2) 

 c (x – 5)(x – 6) d (x – 8)(x + 3) 

 e (x – 9)(x + 2) f (x + 5)(x – 4) 

 g (x – 8)(x + 5) h (x + 7)(x – 4) 

3 a (6x – 7y)(6x + 7y) b (2x – 9y)(2x + 9y) 

 c 2(3a – 10bc)(3a + 10bc) 

4 a (x – 1)(2x + 3) b (3x + 1)(2x + 5) 

 c (2x + 1)(x + 3) d (3x – 1)(3x – 4) 

 e (5x + 3)(2x +3)  f 2(3x – 2)(2x –5) 

5 a 
2( 2)

1

x

x




  b 

1

x

x 
 

 c 
2x

x


 d 

5

x

x 
 

 e 
3x

x


 f 

5

x

x 
 

6 a 
3 4

7

x

x




 b 

2 3

3 2

x

x




 

 c 
2 5

2 3

x

x




 d 

3 1

4

x

x




 

7 (x + 5) 

8 
4( 2)

2

x

x
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Completing the square 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants 
 

Key points 

 Completing the square for a quadratic rearranges ax2 + bx + c into the form p(x + q)2 + r  

 If a ≠ 1, then factorise using a as a common factor. 

 

Examples 

Example 1 Complete the square for the quadratic expression x2 + 6x − 2 

x2 + 6x − 2 

 

= (x + 3)2 − 9 − 2 

 

= (x + 3)2 − 11 

1 Write x2 + bx + c in the form 
2 2

2 2

b b
x c

   
     

   
 

2 Simplify 

 

Example 2 Write 2x2 − 5x + 1 in the form p(x + q)2 + r 

2x2 − 5x + 1 

 

 

 

= 2 5
2 1

2
x x

 
  

 
 

 

= 

2 2
5 5

2 1
4 4

x
    

      
     

 

 

= 

2
5 25

2 1
4 8

x
 

   
 

 

 

 

 

= 

2
5 17

2
4 8

x
 

  
 

 

1 Before completing the square write 

ax2 + bx + c in the form 

2 b
a x x c

a

 
  

 
 

2 Now complete the square by writing 

2 5

2
x x  in the form 

2 2

2 2

b b
x

   
    

   
 

 

3 Expand the square brackets – don’t 

forget to multiply 

2
5

4

 
 
 

by the 

factor of 2 

4 Simplify 
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Practice 

1 Write the following quadratic expressions in the form (x + p)2 + q 

 a x2 + 4x + 3 b x2 – 10x – 3 

 c x2 – 8x d x2 + 6x 

 e x2 – 2x + 7 f x2 + 3x – 2 

2 Write the following quadratic expressions in the form p(x + q)2 + r 

 a 2x2 – 8x – 16 b 4x2 – 8x – 16 

 c 3x2 + 12x – 9 d 2x2 + 6x – 8 

3 Complete the square. 

 a 2x2 + 3x + 6 b 3x2 – 2x 

 c 5x2 + 3x d 3x2 + 5x + 3 

 

Extend 

4 Write (25x2 + 30x + 12) in the form (ax + b)2 + c. 
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Answers 

1 a (x + 2)2 – 1 b (x – 5)2 – 28 

 c (x – 4)2 – 16 d (x + 3)2 – 9 

 e (x – 1)2 + 6 f 

2
3 17

2 4
x

 
  

 
  

2 a 2(x – 2)2 – 24 b 4(x – 1)2 – 20 

 c 3(x + 2)2 – 21 d 

2
3 25

2
2 2

x
 

  
 

 

3 a 

2
3 39

2
4 8

x
 

  
 

 b 

2
1 1

3
3 3

x
 

  
 

 

 c 

2
3 9

5
10 20

x
 

  
 

 d 

2
5 11

3
6 12

x
 

  
 

 

4 (5x + 3)2 + 3 
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Solving quadratic equations by 

factorisation 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants  
 

Key points 

 A quadratic equation is an equation in the form ax2 + bx + c = 0 where a ≠ 0. 

 To factorise a quadratic equation find two numbers whose sum is b and whose products is ac. 

 When the product of two numbers is 0, then at least one of the numbers must be 0. 

 If a quadratic can be solved it will have two solutions (these may be equal). 

Examples 

Example 1 Solve 5x2 = 15x 

5x2 = 15x 

 

5x2 − 15x = 0 

 

 

5x(x − 3) = 0 

 

So 5x = 0 or (x − 3) = 0 

 

 

Therefore x = 0 or x = 3 

1 Rearrange the equation so that all of 

the terms are on one side of the 

equation and it is equal to zero.  

Do not divide both sides by x as this 

would lose the solution x = 0. 

2 Factorise the quadratic equation.  

5x is a common factor. 

3 When two values multiply to make 

zero, at least one of the values must 

be zero. 

4 Solve these two equations. 

Example 2 Solve x2 + 7x + 12 = 0 

x2 + 7x + 12 = 0 

 

b = 7, ac = 12 

 

x2 + 4x + 3x + 12 = 0 

 

x(x + 4) + 3(x + 4) = 0 

 

(x + 4)(x + 3) = 0 

So (x + 4) = 0 or (x + 3) = 0 

 

 

Therefore x = −4 or x = −3 

1 Factorise the quadratic equation. 

Work out the two factors of ac = 12 

which add to give you b = 7.  

(4 and 3) 

2 Rewrite the b term (7x) using these 

two factors. 

3 Factorise the first two terms and the 

last two terms. 

4 (x + 4) is a factor of both terms. 

5 When two values multiply to make 

zero, at least one of the values must 

be zero.  

6 Solve these two equations. 
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Example 3 Solve 9x2 − 16 = 0 

9x2 − 16 = 0 

(3x + 4)(3x – 4) = 0 

 

So (3x + 4) = 0 or (3x – 4) = 0 

 

4

3
x    or 

4

3
x   

1 Factorise the quadratic equation. 

This is the difference of two squares 

as the two terms are (3x)2 and (4)2. 

2 When two values multiply to make 

zero, at least one of the values must 

be zero. 

3 Solve these two equations. 

Example 4 Solve 2x2 − 5x − 12 = 0 

b = −5, ac = −24 

 

 

 

So 2x2 − 8x + 3x – 12 = 0 

 

2x(x − 4) + 3(x − 4) = 0 

 

(x – 4)(2x + 3) = 0 

So (x – 4) = 0 or (2x +3) = 0 

 

4x   or 
3

2
x    

1 Factorise the quadratic equation. 

Work out the two factors of ac = −24 

which add to give you b = −5.  

(−8 and 3) 

2 Rewrite the b term (−5x) using these 

two factors. 

3 Factorise the first two terms and the 

last two terms. 

4 (x − 4) is a factor of both terms. 

5 When two values multiply to make 

zero, at least one of the values must 

be zero.  

6 Solve these two equations. 

Practice 

1 Solve 

 a 6x2 + 4x = 0 b 28x2 – 21x = 0 

 c x2 + 7x + 10 = 0 d x2 – 5x + 6 = 0 

 e x2 – 3x – 4 = 0 f x2 + 3x – 10 = 0 

 g x2 – 10x + 24 = 0 h x2 – 36 = 0 

 i x2 + 3x – 28 = 0 j x2 – 6x + 9 = 0 

 k 2x2 – 7x – 4 = 0 l 3x2 – 13x – 10 = 0 

2 Solve 

 a x2 – 3x = 10 b x2 – 3 = 2x 

 c x2 + 5x = 24 d x2 – 42 = x 

 e x(x + 2) = 2x + 25 f x2 – 30 = 3x – 2 

 g x(3x + 1) = x2 + 15 h 3x(x – 1) = 2(x + 1) 

 

  

Hint 

Get all terms 

onto one side 

of the equation. 
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Solving quadratic equations by 

completing the square 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants  
 

Key points 

 Completing the square lets you write a quadratic equation in the form p(x + q)2 + r = 0. 

Examples 

Example 5 Solve x2 + 6x + 4 = 0. Give your solutions in surd form. 

x2 + 6x + 4 = 0 

 

(x + 3)2 − 9 + 4 = 0 
 

(x + 3)2 − 5 = 0 

(x + 3)2 = 5 

 

x + 3 = 5  

 

x = 5 3   

 

So x = 5 3   or x = 5 3  

1 Write x2 + bx + c = 0 in the form 
2 2

0
2 2

b b
x c

   
      

   
 

2 Simplify. 

3 Rearrange the equation to work out 

x. First, add 5 to both sides. 

4 Square root both sides.  

Remember that the square root of a 

value gives two answers. 

5 Subtract 3 from both sides to solve 

the equation.  

6 Write down both solutions. 

Example 6 Solve 2x2 − 7x + 4 = 0. Give your solutions in surd form. 

2x2 − 7x + 4 = 0 

 

2 7
2 4

2
x x

 
  

 
 = 0 

 
2 2

7 7
2 4

4 4
x

    
      

     

 = 0 

 

 

 

 
2

7 49
2 4

4 8
x

 
   

 
 = 0 

2
7 17

2
4 8

x
 

  
 

 = 0 

 

1 Before completing the square write 

ax2 + bx + c in the form 

2 b
a x x c

a

 
  

 
 

 

2 Now complete the square by writing 

2 7

2
x x  in the form 

2 2

2 2

b b
x

a a

   
    

   
 

 

3 Expand the square brackets. 
 

 

4 Simplify. 

 

(continued on next page) 
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2
7 17

2
4 8

x
 

  
 

 

 
2

7 17

4 16
x

 
  

 
 

7 17

4 4
x     

17 7

4 4
x     

So 
7 17

4 4
x    or 

7 17

4 4
x    

5 Rearrange the equation to work out 

x. First, add 
17

8
 to both sides. 

 

6 Divide both sides by 2. 
 

 

7 Square root both sides. Remember 

that the square root of a value gives 

two answers. 

8 Add 
7

4
 to both sides. 

 

9 Write down both the solutions. 

 

Practice 

3 Solve by completing the square. 

 a x2 – 4x – 3 = 0 b x2 – 10x + 4 = 0 

 c x2 + 8x – 5 = 0 d x2 – 2x – 6 = 0 

 e 2x2 + 8x – 5 = 0 f 5x2 + 3x – 4 = 0 

4 Solve by completing the square. 

 a (x – 4)(x + 2) = 5 

 b 2x2 + 6x – 7 = 0 

 c x2 – 5x + 3 = 0 

  

Hint 

Get all terms 

onto one side 

of the equation. 
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Solving quadratic equations by using the 

formula 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants  
 

Key points 

 Any quadratic equation of the form ax2 + bx + c = 0 can be solved using the formula 

2 4

2

b b ac
x

a

  
   

 If b2 – 4ac is negative then the quadratic equation does not have any real solutions. 

 It is useful to write down the formula before substituting the values for a, b and c. 

Examples 

Example 7 Solve x2 + 6x + 4 = 0. Give your solutions in surd form. 

a = 1, b = 6, c = 4 

2 4

2

b b ac
x

a

  
  

 

 

26 6 4(1)(4)

2(1)
x

  
  

6 20

2
x

 
  

6 2 5

2
x

 
  

 

3 5x     

 

So 3 5x     or 5 3x    

1 Identify a, b and c and write down 

the formula.  

Remember that 2 4b b ac    is 

all over 2a, not just part of it. 

 

2 Substitute a = 1, b = 6, c = 4 into the 

formula. 

 

3 Simplify. The denominator is 2, but 

this is only because a = 1. The 

denominator will not always be 2. 

4 Simplify 20 . 

20 4 5 4 5 2 5      

5 Simplify by dividing numerator and 

denominator by 2. 

6 Write down both the solutions. 
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Example 8 Solve 3x2 − 7x − 2 = 0. Give your solutions in surd form. 

a = 3, b = −7, c = −2 

2 4

2

b b ac
x

a

  
  

 

 

2( 7) ( 7) 4(3)( 2)

2(3)
x

     
  

7 73

6
x


  

So 
7 73

6
x


  or 

7 73

6
x


  

1 Identify a, b and c, making sure you 

get the signs right and write down 

the formula.  

Remember that 2 4b b ac    is 

all over 2a, not just part of it. 

2 Substitute a = 3, b = −7, c = −2 into 

the formula. 
 

3 Simplify. The denominator is 6 

when a = 3. A common mistake is 

to always write a denominator of 2. 

4 Write down both the solutions. 

Practice 

5 Solve, giving your solutions in surd form. 

 a 3x2 + 6x + 2 = 0 b 2x2 – 4x – 7 = 0 

6 Solve the equation x2 – 7x + 2 = 0 

 Give your solutions in the form 
a b

c


, where a, b and c are integers. 

7 Solve 10x2 + 3x + 3 = 5 

 Give your solution in surd form. 

 

Extend 

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form 

when necessary. 

 a 4x(x – 1) = 3x – 2 

 b 10 = (x + 1)2 

 c x(3x – 1) = 10 

  

Hint 

Get all terms onto one 

side of the equation. 



 

28 

 

Answers 

1 a x = 0 or x = 
2

3
   b x = 0 or x = 

3

4
 

 c x = –5 or x = –2 d x = 2 or x = 3 

 e x = –1 or x = 4 f x = –5 or x = 2 

 g x = 4 or x = 6 h x = –6 or x = 6 

 i x = –7 or x = 4 j x = 3 

 k x = 
1

2
  or x = 4 l x = 

2

3
  or x = 5 

2 a x = –2 or x = 5 b x = –1 or x = 3 

 c x = –8 or x = 3 d x = –6 or x = 7 

 e x = –5 or x = 5 f x = –4 or x = 7 

 g x = –3 or x = 2
1

2
 h x = 

1

3
  or x = 2 

3 a x = 2 + 7 or x = 2 – 7  b x = 5 + 21  or x = 5 – 21  

 c x = –4 + 21  or x = –4 – 21  d x = 1 + 7  or x = 1 – 7  

 e x = –2 + 6.5  or x = –2 – 6.5  f x = 
3 89

10

 
 or x = 

3 89

10

 
 

4 a x = 1 + 14  or x = 1 – 14  b x = 
3 23

2

 
 or x = 

3 23

2

 
 

 c x = 
5 13

2


 or x = 

5 13

2


 

5 a x = –1 + 
3

3
 or x = –1 – 

3

3
 b x = 1 + 

3 2

2
 or x = 1 – 

3 2

2
 

6 x = 
7 41

2


 or x = 

7 41

2


 

7 x = 
3 89

20

 
 or x = 

3 89

20

 
 

8 a x = 
7 17

8


 or x = 

7 17

8


 

 b x = –1 + 10  or x = –1 – 10  

 c x = –1
2

3
 or x = 2 
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Sketching quadratic graphs 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants 
 

Key points 

 The graph of the quadratic function  

y = ax2 + bx + c, where a ≠ 0, is a curve  

called a parabola. 

 Parabolas have a line of symmetry and  

a shape as shown. 

 To sketch the graph of a function, find the points where the graph intersects the axes. 

 To find where the curve intersects the y-axis substitute x = 0 into the function. 

 To find where the curve intersects the x-axis substitute y = 0 into the function. 

 At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at 

these points are horizontal. 

 To find the coordinates of the maximum or minimum point (turning points) of a quadratic 

curve (parabola) you can use the completed square form of the function. 

Examples 

Example 1 Sketch the graph of y = x2. 

  

The graph of y = x2 is a parabola. 

 

When x = 0, y = 0. 

 

a = 1 which is greater 

than zero, so the graph 

has the shape: 

 

Example 2 Sketch the graph of y = x2 − x − 6. 

When x = 0, y = 02 − 0 − 6 = −6 

So the graph intersects the y-axis at  

(0, −6) 

When y = 0, x2 − x − 6 = 0 

 

(x + 2)(x − 3) = 0 

 

x = −2 or x = 3 

 

So,  

the graph intersects the x-axis at (−2, 0) 

and (3, 0) 

 

 

1 Find where the graph intersects the 

y-axis by substituting x = 0. 

 

2 Find where the graph intersects the 

x-axis by substituting y = 0. 

3 Solve the equation by factorising. 

 

4 Solve (x + 2) = 0 and (x − 3) = 0. 

 

5 a = 1 which is greater 

than zero, so the graph 

has the shape: 
 

(continued on next page) 

for a > 0 for a < 0 
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x2 − x − 6 = 

2
1 1

6
2 4

x
 

   
 

 

 = 

2
1 25

2 4
x

 
  

 
 

When 

2
1

0
2

x
 

  
 

, 
1

2
x   and 

25

4
y   , so the turning point is at the 

point 
1 25

,
2 4

 
 

 
 

 

6 To find the turning point, complete 

the square. 

 

 

 

 

7 The turning point is the minimum 

value for this expression and occurs 

when the term in the bracket is 

equal to zero. 

 

Practice 

1 Sketch the graph of y = −x2. 

2 Sketch each graph, labelling where the curve crosses the axes. 

 a y = (x + 2)(x − 1) b y = x(x − 3) c y = (x + 1)(x + 5) 

3 Sketch each graph, labelling where the curve crosses the axes. 

 a y = x2 − x − 6 b y = x2 − 5x + 4 c y = x2 – 4 

 d y = x2 + 4x e y = 9 − x2 f y = x2 + 2x − 3 

4 Sketch the graph of y = 2x2 + 5x − 3, labelling where the curve crosses the axes. 

Extend 

5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the 

turning point. 

 a y = x2 − 5x + 6 b y = −x2 + 7x − 12 c y = −x2 + 4x 

6 Sketch the graph of y = x2 + 2x + 1. Label where the curve crosses the axes and write down the 

equation of the line of symmetry.  
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Answers 

1  

  

2 a  b  c 

       

   

   

3 a  b  c  

       

 

 d  e  f  
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4  

  

5 a  b  c  

     

 

6  

  

 Line of symmetry at x = −1. 
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Solving linear simultaneous equations 

using the elimination method 
 

 A LEVEL LINKS 

 Scheme of work: 1c. Equations – quadratic/linear simultaneous  
 

Key points 

 Two equations are simultaneous when they are both true at the same time. 

 Solving simultaneous linear equations in two unknowns involves finding the value of each 

unknown which works for both equations. 

 Make sure that the coefficient of one of the unknowns is the same in both equations. 

 Eliminate this equal unknown by either subtracting or adding the two equations. 

Examples 

Example 1 Solve the simultaneous equations 3x + y = 5 and x + y = 1 

      3x + y = 5 

–      x + y = 1    

      2x       = 4 

So x = 2 

 

Using x + y = 1 

 2 + y = 1 

So y = −1 

 

Check: 

  equation 1: 3 × 2 + (−1) = 5   YES 

  equation 2: 2 + (−1) = 1         YES 

1 Subtract the second equation from 

the first equation to eliminate the y 

term. 

 

 

2 To find the value of y, substitute 

x = 2 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 

Example 2 Solve x + 2y = 13 and 5x − 2y = 5 simultaneously. 

       x + 2y = 13 

+   5x − 2y =   5  

      6x         = 18 

So x = 3 

 

Using x + 2y = 13 

 3 + 2y = 13 

So y = 5 

 

Check: 

   equation 1: 3 + 2 × 5 = 13       YES 

   equation 2: 5 × 3 − 2 × 5 = 5   YES 

1 Add the two equations together to 

eliminate the y term. 

 

 

 

2 To find the value of y, substitute 

x = 3 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 
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Example 3 Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously. 

(2x + 3y = 2) × 4          8x + 12y =   8 

(5x + 4y = 12) × 3      15x + 12y = 36    

                                           7x          =  28 

 

So x = 4 

 

 

Using  2x  +  3y  = 2 

 2 × 4 + 3y = 2 

So y = −2 

 

Check: 

   equation 1: 2 × 4 + 3 × (−2) = 2    YES 

   equation 2: 5 × 4 + 4 × (−2) = 12  YES 

1 Multiply the first equation by 4 and 

the second equation by 3 to make 

the coefficient of y the same for 

both equations. Then subtract the 

first equation from the second 

equation to eliminate the y term. 

 

2 To find the value of y, substitute 

x = 4 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 

 

Practice 

Solve these simultaneous equations. 

1 4x + y = 8 2 3x + y = 7 

 x + y = 5  3x + 2y = 5 

  

3 4x + y = 3 4 3x + 4y = 7 

 3x – y = 11   x – 4y = 5 

 

5 2x + y = 11 6 2x + 3y = 11 

 x – 3y = 9  3x + 2y = 4 
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Solving linear simultaneous equations 

using the substitution method 
 

 A LEVEL LINKS 

 Scheme of work: 1c. Equations – quadratic/linear simultaneous 

 Textbook: Pure Year 1, 3.1 Linear simultaneous equations 
 

Key points 

 The subsitution method is the method most commonly used for A level. This is because it is 

the method used to solve linear and quadratic simultaneous equations. 

Examples 

Example 4 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14 

5x + 3(2x + 1) = 14 

 

5x + 6x + 3 = 14 

11x + 3 = 14 

11x = 11 

So x = 1 

 

Using y = 2x + 1 

 y = 2 × 1 + 1 

So y = 3 

 

Check: 

   equation 1: 3 = 2 × 1 + 1           YES 

   equation 2: 5 × 1 + 3 × 3 = 14   YES 

1 Substitute 2x + 1 for y into the 

second equation. 

2 Expand the brackets and simplify. 

 

3 Work out the value of x. 

 

 

4 To find the value of y, substitute 

x = 1 into one of the original 

equations. 

 

5 Substitute the values of x and y into 

both equations to check your 

answers. 

Example 5 Solve 2x − y = 16 and 4x + 3y = −3 simultaneously. 

y = 2x − 16 

4x + 3(2x − 16) = −3 

 

4x + 6x − 48 = −3 

10x − 48 = −3 

10x = 45 

So x = 1
2

4   

Using y = 2x − 16 

     y = 2 × 1
2

4  − 16 

So y = −7 

 

Check: 

 equation 1: 2 × 1
2

4  – (–7) = 16      YES 

 equation 2: 4 ×  1
2

4  + 3 × (−7) = −3 YES 

1 Rearrange the first equation. 

2 Substitute 2x − 16 for y into the 

second equation. 

3 Expand the brackets and simplify. 

 

4 Work out the value of x. 

 

 

5 To find the value of y, substitute 

x = 1
2

4  into one of the original 

equations. 

 

6 Substitute the values of x and y into 

both equations to check your 

answers. 
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Practice 

Solve these simultaneous equations. 

7 y = x – 4 8 y = 2x – 3 

 2x + 5y = 43  5x – 3y = 11 

9 2y = 4x + 5 10 2x = y – 2 

 9x + 5y = 22  8x – 5y = –11 

11 3x + 4y = 8 12 3y = 4x – 7 

 2x – y = –13  2y = 3x – 4 

 

13 3x = y – 1 14 3x + 2y + 1 = 0 

 2y – 2x = 3  4y = 8 – x 

 

Extend 

15 Solve the simultaneous equations 3x + 5y − 20 = 0 and 
3( )

2( )
4

y x
x y


  . 
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Answers 

1 x = 1, y = 4 

2 x = 3, y = –2 

3 x = 2, y = –5 

4 x = 3, y = –
1

2
 

5 x = 6, y = –1 

6 x = –2, y = 5 

7 x = 9, y = 5 

8 x = –2, y = –7 

9 x = 
1

2
, y = 3

1

2
 

10 x = 
1

2
, y = 3 

11 x = –4, y = 5 

12 x = –2, y = –5 

13 x = 
1

4
, y = 1

3

4
 

14 x = –2, y = 2
1

2
 

15 x = –2
1

2
, y = 5

1

2
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Solving linear and quadratic simultaneous 

equations 
 

 A LEVEL LINKS 

 Scheme of work: 1c. Equations – quadratic/linear simultaneous 
 

Key points 

 Make one of the unknowns the subject of the linear equation (rearranging where necessary). 

 Use the linear equation to substitute into the quadratic equation. 

 There are usually two pairs of solutions. 

 

Examples 

Example 1 Solve the simultaneous equations y = x + 1 and x2 + y2 = 13 

x2 + (x + 1)2 = 13 

 

x2 + x2 + x + x + 1 = 13 

2x2 + 2x + 1 = 13 

 

2x2 + 2x − 12 = 0 

(2x − 4)(x + 3) = 0 

So x = 2 or x = −3 

 

Using y = x + 1 

When x = 2, y = 2 + 1 = 3 

When x = −3, y = −3 + 1 = −2 

 

So the solutions are  

 x = 2,  y = 3 and  x = −3, y = −2 

 

Check: 

 equation 1: 3 = 2 + 1               YES 

           and −2 = −3 + 1             YES 

 equation 2: 22 + 32 = 13           YES 

          and (−3)2 + (−2)2 = 13  YES 

1 Substitute x + 1 for y into the second 

equation. 

2 Expand the brackets and simplify. 

 

 

3 Factorise the quadratic equation. 

 

4 Work out the values of x. 

 

5 To find the value of y, substitute 

both values of x into one of the 

original equations. 

 

 

 

 

6 Substitute both pairs of values of x 

and y into both equations to check 

your answers. 
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Example 2 Solve 2x + 3y = 5 and 2y2 + xy = 12 simultaneously. 

5 3

2

y
x


   

22 12
5 3

2
y

y
y

 
 

 


  

 

2
25 3

2
2 12y

y y



  

2 25 3 244 y yy    

2 5 24 0yy    

(y + 8)(y − 3) = 0 

So y = −8 or y = 3 

 

Using 2x + 3y = 5 

When y = −8,   2x + 3 × (−8) = 5,   x = 14.5 

When y = 3,     2x + 3 × 3 = 5,   x = −2 

 

So the solutions are  

   x = 14.5,  y = −8   and   x = −2, y = 3 

 

Check: 

 equation 1: 2 × 14.5 + 3 × (−8) = 5     YES 

            and  2 × (−2) + 3 × 3 = 5          YES 

 equation 2: 2×(−8)2 + 14.5×(−8) = 12 YES 

            and  2 × (3)2 + (−2) × 3 = 12    YES 

1 Rearrange the first equation. 

 

2  Substitute 
5 3

2

y
 for x into the 

second equation. Notice how it is 

easier to substitute for x than for y. 

3 Expand the brackets and simplify. 

 

 

4 Factorise the quadratic equation. 
 
5 Work out the values of y. 

 

6 To find the value of x, substitute 

both values of y into one of the 

original equations. 

 

 

 

 

7 Substitute both pairs of values of x 

and y into both equations to check 

your answers. 

Practice 

Solve these simultaneous equations. 

1 y = 2x + 1 2 y = 6 − x 

 x2 + y2 = 10  x2 + y2 = 20 

3 y = x – 3 4 y = 9 − 2x 

 x2 + y2 = 5  x2 + y2 = 17 

5 y = 3x – 5 6 y = x − 5 

 y = x2 − 2x + 1  y = x2 − 5x − 12 

7 y = x + 5 8 y = 2x – 1 

 x2 + y2 = 25  x2 + xy = 24 

9 y = 2x 10 2x + y = 11 

 y2 – xy = 8  xy = 15 

Extend 

11 x – y = 1 12 y – x = 2 

 x2 + y2 = 3  x2 + xy = 3  



 

40 

 

Answers 

1 x = 1, y = 3 

 
9 13

,  
5 5

x y     

2 x = 2, y = 4 

 x = 4, y = 2 

3 x = 1, y = −2 

 x = 2, y = –1 

4 x = 4, y = 1 

 
16 13

,  
5 5

x y   

5 x = 3, y = 4 

 x = 2, y = 1 

6 x = 7, y = 2 

 x = −1, y = −6 

7 x = 0, y = 5 

 x = –5, y = 0 

8 x = 
8

3
 , y = 

19

3
  

 x = 3, y = 5 

9 x = –2, y = –4 

 x = 2, y = 4 

10 x = 
5

2
, y = 6 

 x = 3, y = 5 

11 x = 
1 5

2


, y = 

1 5

2

 
 

 x = 
1 5

2


, y = 

1 5

2

 
 

12 x = 
1 7

2

 
, y = 

3 7

2


 

 x = 
1 7

2

 
, y = 

3 7

2
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Solving simultaneous equations 

graphically 
 

 A LEVEL LINKS 

 Scheme of work: 1c. Equations – quadratic/linear simultaneous 
 

Key points 

 You can solve any pair of simultaneous equations by drawing the graph of both equations and 

finding the point/points of intersection. 

Examples 

Example 1 Solve the simultaneous equations y = 5x + 2 and x + y = 5 graphically. 

y = 5 – x 

 

y = 5 – x has gradient –1 and y-intercept 5. 

y = 5x + 2 has gradient 5 and y-intercept 2. 

 
Lines intersect at 

 x = 0.5, y = 4.5 

 

Check: 

First equation y = 5x + 2: 

 4.5 = 5 × 0.5 + 2             YES 

Second equation x + y = 5: 

 0.5 + 4.5 = 5                   YES 

1 Rearrange the equation x + y = 5 

to make y the subject. 

2 Plot both graphs on the same grid 

using the gradients and  

y-intercepts. 

 

 

 

 

 

 

 

 

 

 

 

3 The solutions of the simultaneous 

equations are the point of 

intersection. 

 

4 Check your solutions by 

substituting the values into both 

equations. 
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Example 2 Solve the simultaneous equations y = x − 4 and y = x2 − 4x + 2 graphically. 

 

x 0 1 2 3 4 

y 2 –1 –2 –1 2 

 

 
 

The line and curve intersect at 

 x = 3, y = −1 and x = 2, y = −2 

 

Check: 

First equation y = x − 4: 

 −1 = 3 − 4  YES 

 −2 = 2 − 4  YES 

Second equation y = x2 − 4x + 2: 

 −1 = 32 − 4 × 3 + 2  YES 

 −2 = 22 − 4 × 2 + 2  YES 

1 Construct a table of values and 

calculate the points for the quadratic 

equation. 

 

 

2 Plot the graph. 

 

3 Plot the linear graph on the same 

grid using the gradient and  

y-intercept. 

y = x – 4 has gradient 1 and  

y-intercept –4. 

 

 

 

 

 

 

 

 

 

4 The solutions of the simultaneous 

equations are the points of 

intersection. 

 

5 Check your solutions by substituting 

the values into both equations. 

 

Practice 

1 Solve these pairs of simultaneous equations graphically. 

 a y = 3x − 1 and y = x + 3 

 b y = x − 5 and y = 7 − 5x 

 c y = 3x + 4 and y = 2 − x 

2 Solve these pairs of simultaneous equations graphically. 

 a x + y = 0 and y = 2x + 6 

 b 4x + 2y = 3 and y = 3x − 1 

 c 2x + y + 4 = 0 and 2y = 3x − 1 

Hint 

Rearrange the 

equation to make 

y the subject. 
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3 Solve these pairs of simultaneous equations graphically. 

 a y = x − 1 and y = x2 − 4x + 3 

 b y = 1 − 3x and y = x2 − 3x − 3 

 c y = 3 − x and y = x2 + 2x + 5 

4 Solve the simultaneous equations x + y = 1 and x2 + y2 = 25 graphically. 

Extend 

5 a Solve the simultaneous equations 2x + y = 3 and x2 + y = 4 

  i graphically 

  ii algebraically to 2 decimal places. 

 b Which method gives the more accurate solutions? Explain your answer. 
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Answers 

1 a x = 2, y = 5 

 b x = 2, y = −3 

 c x = −0.5, y = 2.5 

2 a x = −2, y = 2 

 b x = 0.5, y = 0.5 

 c x = −1, y = −2 

3 a x = 1, y = 0 and x = 4, y = 3 

 b x = −2, y = 7 and x = 2, y = −5 

 c x = −2, y = 5 and x = −1, y = 4 

4 x = −3, y = 4 and x = 4, y = −3 

5 a i x = 2.5, y = −2 and x = −0.5, y = 4 

  ii x = 2.41, y = −1.83 and x = −0.41, y = 3.83 

 b Solving algebraically gives the more accurate solutions as the solutions from the graph are 

only estimates, based on the accuracy of your graph. 
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Linear inequalities 
 

 A LEVEL LINKS 

 Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions) 
 

Key points 

 Solving linear inequalities uses similar methods to those for solving linear equations. 

 When you multiply or divide an inequality by a negative number you need to reverse the 

inequality sign, e.g. < becomes >. 

Examples 

Example 1 Solve −8 ≤ 4x < 16 

−8 ≤ 4x < 16 

−2 ≤  x  < 4 

Divide all three terms by 4. 

 

Example 2 Solve 4 ≤ 5x < 10 

4 ≤ 5x < 10 
4

5
 ≤ x < 2 

Divide all three terms by 5. 

 

Example 3 Solve 2x − 5 < 7 

2x − 5 < 7 

      2x < 12 

        x < 6 

1 Add 5 to both sides. 

2 Divide both sides by 2. 

 

Example 4 Solve 2 − 5x ≥ −8 

2 − 5x ≥ −8 

    −5x ≥ −10 

         x ≤ 2 

1 Subtract 2 from both sides. 

2 Divide both sides by −5.  

Remember to reverse the inequality 

when dividing by a negative 

number. 

 

Example 5 Solve 4(x − 2) > 3(9 − x) 

4(x − 2) > 3(9 − x) 

   4x − 8 > 27 − 3x 

   7x − 8 > 27 

         7x > 35 

           x > 5 

1 Expand the brackets. 

2 Add 3x to both sides. 

3 Add 8 to both sides. 

4 Divide both sides by 7. 

Practice 
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1 Solve these inequalities. 

 a 4x > 16 b 5x – 7 ≤ 3 c 1 ≥ 3x + 4 

 d 5 – 2x < 12 e 5
2

x
   f 8 < 3 – 

3

x
  

2 Solve these inequalities. 

 a 4
5

x
   b 10 ≥ 2x + 3 c 7 – 3x > –5 

3 Solve 

 a 2 – 4x ≥ 18 b 3 ≤ 7x + 10 < 45 c 6 – 2x ≥ 4 

 d 4x + 17 < 2 – x e 4 – 5x < –3x f –4x ≥ 24 

4 Solve these inequalities. 

 a 3t + 1 < t + 6 b 2(3n – 1) ≥ n + 5 

5 Solve. 

 a 3(2 – x) > 2(4 – x) + 4 b 5(4 – x) > 3(5 – x) + 2 

 

Extend 

6 Find the set of values of x for which 2x + 1 > 11 and 4x – 2 > 16 – 2x. 
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Answers 

1 a x > 4 b x ≤ 2 c x ≤ –1 

 d x > –
7

2
 e x ≥ 10 f x < –15 

2 a x < –20 b x ≤ 3.5 c x < 4 

3 a x ≤ –4 b –1 ≤ x < 5 c x ≤ 1 

 d x < –3 e x > 2 f x ≤ –6 

4 a t < 
5

2
 b n ≥ 

7

5
 

5 a x < –6 b x < 
3

2
 

6 x > 5 (which also satisfies x > 3) 
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Quadratic inequalities 
 

 A LEVEL LINKS 

 Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions) 
 

Key points 

 First replace the inequality sign by = and solve the quadratic equation. 

 Sketch the graph of the quadratic function. 

 Use the graph to find the values which satisfy the quadratic inequality. 

Examples 

Example 1 Find the set of values of x which satisfy x2 + 5x + 6 > 0 

x2 + 5x + 6 = 0 

(x + 3)(x + 2) = 0 

x = −3 or x = −2 

 

 
x < −3 or x > −2 

1 Solve the quadratic equation by 

factorising. 

 

 

2 Sketch the graph of  

y = (x + 3)(x + 2)  

 

3 Identify on the graph where  

x2 + 5x + 6 > 0, i.e. where y > 0 

 

 

 

 

 

 

4 Write down the values which satisfy 

the inequality x2 + 5x + 6 > 0 

 

Example 2 Find the set of values of x which satisfy x2 − 5x ≤ 0 

x2 − 5x = 0 

x(x − 5) = 0 

x = 0 or x = 5 

 
0 ≤ x ≤ 5 

1 Solve the quadratic equation by 

factorising. 

 

2 Sketch the graph of y = x(x − 5) 

 

3 Identify on the graph where  

x2 − 5x ≤ 0, i.e. where y ≤ 0 

 

 

 

4 Write down the values which satisfy 

the inequality x2 − 5x ≤ 0 

 

Example 3 Find the set of values of x which satisfy −x2 − 3x + 10 ≥ 0 
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−x2 − 3x + 10 = 0 

(−x + 2)(x + 5) = 0 

x = 2 or x = −5 

 

 

 

 

 

 

 

 

 

 

 

−5 ≤ x ≤ 2 

1 Solve the quadratic equation by 

factorising. 

 

 

2 Sketch the graph of 

y = (−x + 2)(x + 5) = 0 

 

3 Identify on the graph where 

−x2 − 3x + 10 ≥ 0, i.e. where y ≥ 0 

 

 

 

 

 

3 Write down the values which satisfy 

the inequality −x2 − 3x + 10 ≥ 0 

Practice 

1 Find the set of values of x for which (x + 7)(x – 4) ≤ 0 

2 Find the set of values of x for which x2 – 4x – 12 ≥ 0 

3 Find the set of values of x for which 2x2 –7x + 3 < 0 

4 Find the set of values of x for which 4x2 + 4x – 3 > 0 

5 Find the set of values of x for which 12 + x – x2 ≥ 0 

 

Extend 

Find the set of values which satisfy the following inequalities. 

6 x2 + x ≤ 6 

7 x(2x – 9) < –10 

8 6x2 ≥ 15 + x  

 

O –5   2  x 

y 
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Answers 

1 –7 ≤ x ≤ 4 

2 x ≤ –2 or x ≥ 6 

3 
1

3
2

x    

4 x < 
3

2
  or x > 

1

2
 

5 –3 ≤ x ≤ 4 

6 –3 ≤ x ≤ 2 

7 2 < x < 2
1

2
 

8 
3

2
x    or 

5

3
x   
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Sketching cubic and reciprocal graphs 
 

 A LEVEL LINKS 

 Scheme of work: 1e. Graphs – cubic, quartic and reciprocal 
 

Key points 

 The graph of a cubic function, 

which can be written in the 

form y = ax3 + bx2 + cx + d, 

where a ≠ 0, has one of the 

shapes shown here. 

 

 

 

 

 

 

 

 

 The graph of a reciprocal 

function of the form 
a

y
x

  has 

one of the shapes shown here. 

 

 

 To sketch the graph of a function, find the points where the graph intersects the axes. 

 To find where the curve intersects the y-axis substitute x = 0 into the function. 

 To find where the curve intersects the x-axis substitute y = 0 into the function. 

 Where appropriate, mark and label the asymptotes on the graph. 

 Asymptotes are lines (usually horizontal or vertical) which the curve gets closer to but never 

touches or crosses. Asymptotes usually occur with reciprocal functions. For example, the 

asymptotes for the graph of 
a

y
x

  are the two axes (the lines y = 0 and x = 0). 

 At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at 

these points are horizontal. 

 A double root is when two of the solutions are equal. For example (x – 3)2(x + 2) has a 

double root at x = 3. 

 When there is a double root, this is one of the turning points of a cubic function. 
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Examples 

Example 1 Sketch the graph of y = (x − 3)(x − 1)(x + 2) 

To sketch a cubic curve find intersects with both axes and use the key points above 

for the correct shape. 

When x = 0, y = (0 − 3)(0 − 1)(0 + 2) 

    = (−3) × (−1) × 2 = 6 

The graph intersects the y-axis at (0, 6) 

 

When y = 0, (x − 3)(x − 1)(x + 2) = 0 

So x = 3, x = 1 or x = −2 

The graph intersects the x-axis at  

 (−2, 0), (1, 0) and (3, 0) 

 

1 Find where the graph intersects the 

axes by substituting x = 0 and y = 0.  

Make sure you get the coordinates 

the right way around, (x, y). 

2 Solve the equation by solving  

x − 3 = 0, x − 1 = 0 and x + 2 = 0 

 

 

 

3 Sketch the graph. 

 a = 1 > 0 so the graph has the shape: 

 

Example 2 Sketch the graph of y = (x + 2)2(x − 1) 

To sketch a cubic curve find intersects with both axes and use the key points above 

for the correct shape. 

When x = 0, y = (0 + 2)2(0 − 1) 

    = 22 × (−1) = −4 

The graph intersects the y-axis at (0, −4) 

 

When y = 0, (x + 2)2(x − 1) = 0 

So x = −2 or x =1 

 

(−2, 0) is a turning point as x = −2 is a 

double root. 

The graph crosses the x-axis at (1, 0) 

 

1 Find where the graph intersects the 

axes by substituting x = 0 and y = 0. 

 

 

2 Solve the equation by solving  

x + 2 = 0 and x − 1 = 0 

 

 

 

 

 

3 a = 1 > 0 so the graph has the shape: 
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Practice 

1 Here are six equations. 

 A 
5

y
x

   B y = x2 + 3x – 10 C y = x3 + 3x2  

 D y = 1 – 3x2 – x3 E y = x3 – 3x2 – 1 F x + y = 5 

 Here are six graphs. 

 i  ii iii 

 

 

 

 

 

 

 

 iv  v vi 

 

 

 

 

 

 

 a Match each graph to its equation. 

 b Copy the graphs ii, iv and vi and draw the tangent and normal each  at point P. 

Sketch the following graphs 

2  y = 2x3    3 y = x(x – 2)(x + 2) 

4 y = (x + 1)(x + 4)(x – 3)    5 y = (x + 1)(x – 2)(1 – x) 

6 y = (x – 3)2(x + 1)    7 y = (x – 1)2(x – 2) 

8 y = 
3

x
    9 y = 

2

x
  

 

Extend 

10 Sketch the graph of 
1

2
y

x



 11 Sketch the graph of 

1

1
y

x



   

Hint 

Find where each 

of the cubic 

equations cross 

the y-axis. 

Hint: Look at the shape of y = 
a

x
 

in the second key point. 
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Answers 

1 a i – C 

  ii – E 

  iii – B 

  iv – A 

  v – F 

  vi – D 

 

 b ii  iv 

 

 

 

 

 

 

 

 

  vi 

 

 

 

 

 

 

 

 

 

2   3 

 

 

 

 

 

 

4   5 
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6   7 

 

 

 

 

 

 

8   9   

 

 

 

 

 

 

 

10   11  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

O x 

y 
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Translating graphs 
 

 A LEVEL LINKS 

 Scheme of work: 1f. Transformations – transforming graphs – f(x) notation 
 

Key points 

 The transformation y = f(x) ± a is a 

translation of y = f(x) parallel to the y-axis; 

it is a vertical translation.  

 

As shown on the graph,  

o y = f(x) + a translates y = f(x) up  

o y = f(x) – a translates y = f(x) down. 

 

 

 

 The transformation y = f(x ± a) is a 

translation of y = f(x) parallel to the x-axis; 

it is a horizontal translation. 

  

As shown on the graph,  

o y = f(x + a) translates y = f(x) to the left 

o y = f(x – a) translates y = f(x) to the right.  

 

Examples 

Example 1 The graph shows the function y = f(x). 

  Sketch the graph of y = f(x) + 2. 

 

 

 

 
 

For the function y = f(x) + 2 translate 

the function y = f(x) 2 units up. 

 

Example 2 The graph shows the function y = f(x). 
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 Sketch the graph of y = f(x − 3). 

 

 

 

 

For the function y = f(x − 3) translate 

the function y = f(x) 3 units right. 

 

 

Practice 

1 The graph shows the function y = f(x).  

Copy the graph and on the same axes sketch and 

label the graphs of y = f(x) + 4 and y = f(x + 2). 

 

 

 

2 The graph shows the function y = f(x). 

Copy the graph and on the same axes sketch and 

label the graphs of y = f(x + 3) and y = f(x) – 3.  

 

 

 

3 The graph shows the function y = f(x). 

Copy the graph and on the same axes sketch the 

graph of y = f(x – 5). 
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4 The graph shows the function y = f(x) and two 

transformations of y = f(x), labelled C1 and C2. 

Write down the equations of the translated curves 

C1 and C2 in function form. 

 

 

 

 

 

 

 

5 The graph shows the function y = f(x) and two 

transformations of y = f(x), labelled C1 and C2. 

Write down the equations of the translated curves 

C1 and C2 in function form. 

 

 

 

 

 

6 The graph shows the function y = f(x). 

 a Sketch the graph of y = f(x) + 2 

 b Sketch the graph of y = f(x + 2) 
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Stretching graphs 
 

 A LEVEL LINKS 

 Scheme of work: 1f. Transformations – transforming graphs – f(x) notation 

 Textbook: Pure Year 1, 4.6 Stretching graphs 
 

Key points 

 

 The transformation y = f(ax) is a horizontal 

stretch of y = f(x) with scale factor 
1

a
 

parallel to the x-axis.  

 

 

 

 

 

 The transformation y = f(–ax) is a 

horizontal stretch of y = f(x) with scale 

factor 
1

a
 parallel to the x-axis and then a 

reflection in the y-axis.   

 

 

 

 

 

 The transformation y = af(x) is a vertical 

stretch of y = f(x) with scale factor a 

parallel to the y-axis.  

 

 

 

 

 

 

 The transformation y = –af(x) is a vertical 

stretch of y = f(x) with scale factor a 

parallel to the y-axis and then a reflection 

in the x-axis. 
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Examples 

Example 3 The graph shows the function y = f(x). 

  Sketch and label the graphs of  

  y = 2f(x) and y = –f(x). 

 

 

 

 

The function y = 2f(x) is a vertical 

stretch of y = f(x) with scale factor 

2 parallel to the y-axis. 

The function y = −f(x) is a 

reflection of y = f(x) in the  

x-axis. 

 

Example 4 The graph shows the function y = f(x). 

  Sketch and label the graphs of  

  y = f(2x) and y = f(–x). 

 

 

 

 

The function y = f(2x) is a horizontal 

stretch of y = f(x) with scale factor 
1
2  

parallel to the x-axis. 

The function y = f(−x) is a reflection 

of y = f(x) in the y-axis. 
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Practice 

7 The graph shows the function y = f(x). 

 a Copy the graph and on the same axes 

sketch and label the graph of y = 3f(x). 

 b Make another copy of the graph and on 

the same axes sketch and label the graph 

of y = f(2x). 

 

 

8 The graph shows the function y = f(x). 

Copy the graph and on the same axes  

sketch and label the graphs of 

y = –2f(x) and y = f(3x). 

 

 

9 The graph shows the function y = f(x).  

Copy the graph and, on the same axes,  

sketch and label the graphs of  

y = –f(x) and y =  1
2

f x . 

 

 

10 The graph shows the function y = f(x). 

Copy the graph and, on the same axes,  

sketch the graph of y = –f(2x).  

 

 

11 The graph shows the function y = f(x) and a 

transformation, labelled C. 

Write down the equation of the translated 

curve C in function form. 
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12 The graph shows the function y = f(x) and a 

transformation labelled C. 

Write down the equation of the translated 

curve C in function form. 

 

 

13 The graph shows the function y = f(x). 

 a Sketch the graph of y = −f(x). 

 b Sketch the graph of y = 2f(x). 

 

 

 

Extend 

14 a Sketch and label the graph of y = f(x), where f(x) = (x – 1)(x + 1). 

 b On the same axes, sketch and label the graphs of y = f(x) – 2 and y = f(x + 2). 

15 a Sketch and label the graph of y = f(x), where f(x) = –(x + 1)(x – 2). 

 b On the same axes, sketch and label the graph of y =  1
2

f x .  

  



 

63 

 

Answers 

1     2 

      

 

3 

  

4 C1: y = f(x – 90°) 

 C2: y = f(x) – 2 

5 C1: y = f(x – 5) 

 C2: y = f(x) – 3 

6 a   b 
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7 a   b 

      

8    9 

     

10 

  

11 y = f(2x) 

12 y = –2f(2x) or y = 2f(–2x) 

13 a   b 
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14 

  

15 
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Straight line graphs 
 

 A LEVEL LINKS 

 Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems 
 

Key points 

 A straight line has the equation y = mx + c, where m is 

the gradient and c is the y-intercept (where x = 0). 

 The equation of a straight line can be written in the form 

ax + by + c = 0, where a, b and c are integers. 

 When given the coordinates (x1, y1) and (x2, y2) of two 

points on a line the gradient is calculated using the 

formula 2 1

2 1

y y
m

x x





  

Examples 

Example 1 A straight line has gradient 
1

2
  and y-intercept 3. 

Write the equation of the line in the form ax + by + c = 0. 

m = 
1

2
  and c = 3 

So y = 
1

2
 x + 3 

1

2
x + y – 3 = 0 

 

x + 2y − 6 = 0 

1 A straight line has equation 

y = mx + c. Substitute the gradient 

and y-intercept given in the question 

into this equation. 

2 Rearrange the equation so all the 

terms are on one side and 0 is on  

the other side.  

3 Multiply both sides by 2 to 

eliminate the denominator. 

 

Example 2 Find the gradient and the y-intercept of the line with the equation 3y − 2x + 4 = 0. 

3y − 2x + 4 = 0 

3y = 2x − 4 

2 4

3 3
y x    

Gradient = m = 
2

3
 

y-intercept = c = 
4

3
  

1 Make y the subject of the equation. 

 

2 Divide all the terms by three to get 

the equation in the form y = … 
 

3 In the form y = mx + c, the gradient 

is m and the y-intercept is c. 
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Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3. 

m = 3 

y = 3x + c 

 

 

13 = 3 × 5 + c 

 

13 = 15 + c 

c = −2 

y = 3x − 2 

1 Substitute the gradient given in the 

question into the equation of a 

straight line y = mx + c. 

2 Substitute the coordinates x = 5 and 

y = 13 into the equation. 

3 Simplify and solve the equation. 

 

4 Substitute c = −2 into the equation 

y = 3x + c 

 

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7). 

1 2x  , 2 8x  , 1 4y   and 2 7y   

2 1

2 1

7 4 3 1

8 2 6 2

y y
m

x x

 
   

 
 

 

1

2
y x c    

1
4 2

2
c    

 c = 3 

1
3

2
y x   

1 Substitute the coordinates into the 

equation 2 1

2 1

y y
m

x x





 to work out 

the gradient of the line. 

2 Substitute the gradient into the 

equation of a straight line 

y = mx + c. 

3 Substitute the coordinates of either 

point into the equation. 

4 Simplify and solve the equation. 

5 Substitute c = 3 into the equation 

1

2
y x c   

 

Practice 

1 Find the gradient and the y-intercept of the following equations. 

 a y = 3x + 5 b y = 
1

2
 x – 7  

 c 2y = 4x – 3 d x + y = 5 

 e 2x – 3y – 7 = 0 f 5x + y – 4 = 0 

2 Copy and complete the table, giving the equation of the line in the form y = mx + c. 

Gradient y-intercept Equation of the line 

5 0  

–3 2  

4 –7  

Hint 

Rearrange the equations 

to the form y = mx + c 
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3 Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines 

with the following gradients and y-intercepts. 

 a gradient 
1

2
 ,  y-intercept –7 b gradient 2,  y-intercept 0 

 c gradient 
2

3
,  y-intercept 4 d gradient –1.2,  y-intercept –2 

4 Write an equation for the line which passes though the point (2, 5) and has gradient 4. 

5 Write an equation for the line which passes through the point (6, 3) and has gradient 
2

3
  

6 Write an equation for the line passing through each of the following pairs of points. 

 a (4, 5),  (10, 17) b (0, 6),  (–4, 8) 

 c (–1, –7),  (5, 23) d (3, 10),  (4, 7) 

 

Extend 

7 The equation of a line is 2y + 3x – 6 = 0. 

Write as much information as possible about this line. 
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Answers 

1 a m = 3, c = 5 b m = 
1

2
 , c = –7  

 c m = 2, c = 
3

2
  d m = –1, c = 5 

 e m = 
2

3
, c = 

7

3
 or –2

1

3
  f m = –5, c = 4 

2  

Gradient y-intercept Equation of the line 

5 0 y = 5x 

–3 2 y = –3x + 2 

4 –7 y = 4x –7 

3 a x + 2y + 14 = 0 b 2x – y = 0 

 c 2x – 3y + 12 = 0 d 6x + 5y + 10 = 0 

4 y = 4x – 3 

5 y = 
2

3
 x + 7 

6 a y = 2x – 3 b y = 
1

2
 x + 6 

 c y = 5x –2 d y = –3x + 19 

7 
3

3
2

y x   , the gradient is 
3

2
  and the y-intercept is 3. 

The line intercepts the axes at (0, 3) and (2, 0). 

Students may sketch the line or give coordinates that lie on the line such as 
3

1,
2

 
 
 

 or  4, 3 . 
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Parallel and perpendicular lines 
 

 A LEVEL LINKS 

 Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems 
 

Key points 

 When lines are parallel they have the same 

gradient. 

 A line perpendicular to the line with equation 

y = mx + c has gradient 
1

m
 . 

 

Examples 

Example 1 Find the equation of the line parallel to y = 2x + 4 which passes through  

the point (4, 9). 

y = 2x + 4 

m = 2 

y = 2x + c 

 

9 = 2 × 4 + c 

 

9 = 8 + c 

c = 1 

y = 2x + 1 

1 As the lines are parallel they have 

the same gradient. 

2 Substitute m = 2 into the equation of 

a straight line y = mx + c. 

3 Substitute the coordinates into the 

equation y = 2x + c 

4 Simplify and solve the equation. 

 

5 Substitute c = 1 into the equation 

y = 2x + c 

Example 2 Find the equation of the line perpendicular to y = 2x − 3 which passes through  

the point (−2, 5). 

y = 2x − 3 

m = 2 

1 1

2m
    

1

2
y x c    

1
5 ( 2)

2
c      

 

5 = 1 + c 

c = 4 

1
4

2
y x    

1 As the lines are perpendicular, the 

gradient of the perpendicular line  

is 
1

m
 . 

2 Substitute m = 
1

2
  into y = mx + c. 

3 Substitute the coordinates (–2, 5) 

into the equation 
1

2
y x c    

4 Simplify and solve the equation. 

 

5 Substitute c = 4 into 
1

2
y x c   . 

Example 3 A line passes through the points (0, 5) and (9, −1). 

Find the equation of the line which is perpendicular to the line and passes through  

its midpoint. 
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1 0x  , 2 9x  , 1 5y   and 2 1y    

2 1

2 1

1 5

9 0

6 2
      

9 3

y y
m

x x

  
 

 


  

 

1 3

2m
   

 

3

2
y x c    

 

Midpoint = 
0 9 5 ( 1) 9

, , 2
2 2 2

     
   

   
 

3 9
2

2 2
c    

19

4
c     

3 19

2 4
y x   

1 Substitute the coordinates into the 

equation 2 1

2 1

y y
m

x x





 to work out 

the gradient of the line. 

 

2 As the lines are perpendicular, the 

gradient of the perpendicular line  

is 
1

m
 . 

3 Substitute the gradient into the 

equation y = mx + c. 

 

4 Work out the coordinates of the 

midpoint of the line. 

 

5 Substitute the coordinates of the 

midpoint into the equation. 

6 Simplify and solve the equation. 

7 Substitute 
19

4
c    into the equation 

3

2
y x c  . 

 

Practice 

1 Find the equation of the line parallel to each of the given lines and which passes through each of 

the given points. 

 a y = 3x + 1    (3, 2) b y = 3 – 2x    (1, 3) 

 c 2x + 4y + 3 = 0    (6, –3) d 2y –3x + 2 = 0    (8, 20) 

2 Find the equation of the line perpendicular to y = 
1

2
x – 3 which 

passes through the point (–5, 3). 

 

3 Find the equation of the line perpendicular to each of the given lines and which passes through 

each of the given points. 

 a y = 2x – 6    (4, 0) b y = 
1

3
 x + 

1

2
    (2, 13) 

 c x –4y – 4 = 0    (5, 15) d 5y + 2x – 5 = 0    (6, 7) 

4 In each case find an equation for the line passing through the origin which is also perpendicular 

to the line joining the two points given. 

 a (4, 3),  (–2, –9) b (0, 3),  (–10, 8) 

 

Hint 

If m = 
a

b
 then the negative 

reciprocal 
1 b

m a
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Extend 

5 Work out whether these pairs of lines are parallel, perpendicular or neither. 

 a y = 2x + 3 b y = 3x  c y = 4x – 3 

  y = 2x – 7  2x + y – 3 = 0  4y + x = 2 

 

 d 3x – y + 5 = 0 e 2x + 5y – 1 = 0 f 2x – y = 6 

  x + 3y = 1  y = 2x + 7  6x – 3y + 3 = 0 

6 The straight line L1 passes through the points A and B with coordinates (–4, 4) and (2, 1), 

respectively. 

 a Find the equation of L1 in the form ax + by + c = 0 

 The line L2 is parallel to the line L1 and passes through the point C with coordinates (–8, 3). 

 b Find the equation of L2 in the form ax + by + c = 0 

 The line L3 is perpendicular to the line L1 and passes through the origin. 

 c Find an equation of L3 
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Answers 

1 a y = 3x –7 b y = –2x + 5 

 c y = –
1

2
x  d y = 

3

2
x + 8 

2 y = −2x – 7 

3 a y = –
1

2
x + 2 b y = 3x + 7 

 c y = –4x + 35 d y = 
5

2
x – 8 

4 a y = –
1

2
x b y = 2x 

5 a Parallel b Neither c Perpendicular  

 d Perpendicular e Neither f Parallel 

6 a x + 2y – 4 = 0 b x + 2y + 2 = 0 c y = 2x 
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Pythagoras’ theorem 
 

 A LEVEL LINKS 

 Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems 
 

Key points 

In a right-angled triangle the longest side is called the 

hypotenuse.  

Pythagoras’ theorem states that for a right-angled triangle the 

square of the hypotenuse is equal to the sum of the squares 

of the other two sides. 

c2 = a2 + b2 

Examples 

Example 1 Calculate the length of the hypotenuse. 

Give your answer to 3 significant figures.  

 

 

c2 = a2 + b2 

 

 

 

 

 

 

x2 = 52 + 82 

x2 = 25 + 64 

x2 = 89 

89x   

 

x = 9.433 981 13... 

x = 9.43 cm 

1 Always start by stating the formula 

for Pythagoras’ theorem and 

labelling the hypotenuse c and the 

other two sides a and b. 

 

 

 

2 Substitute the values of a, b and c 

into the formula for Pythagoras' 

theorem. 

3 Use a calculator to find the square 

root. 

4 Round your answer to 3 significant 

figures and write the units with your 

answer. 
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Example 2 Calculate the length x.  
Give your answer in surd form.  

 

 

c2 = a2 + b2 

 

102 = x2 + 42 

100 = x2 + 16 

x2 = 84 

84x   

2 21x   cm 

1 Always start by stating the formula 

for Pythagoras' theorem.  

2  Substitute the values of a, b and c 

into the formula for Pythagoras' 

theorem. 

 

3 Simplify the surd where possible 

and write the units in your answer. 

 

Practice 

1 Work out the length of the unknown side in each triangle. 

 Give your answers correct to 3 significant figures.  

 a  b  

     

 

 

 

 c  d 

  

 

   

  

2 Work out the length of the unknown side in each triangle. 

 Give your answers in surd form. 

 a  b 

 

 

 

  

 c  d 
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Hint 

Draw a sketch of the rectangle. 

Hint 

Draw a diagram using 

the information given 

in the question. 

3 Work out the length of the unknown side in each triangle.  
 Give your answers in surd form. 

 a  b 

 

 

 

 c  d 

 

 

 

 

4 A rectangle has length 84 mm and width 45 mm.  
 Calculate the length of the diagonal of the rectangle. 

 Give your answer correct to 3 significant figures. 

 

Extend 

5 A yacht is 40 km due North of a lighthouse. 

A rescue boat is 50 km due East of the same lighthouse. 

Work out the distance between the yacht and the rescue boat.  

Give your answer correct to 3 significant figures. 

6 Points A and B are shown on the diagram. 

Work out the length of the line AB.  

Give your answer in surd form. 

  

7 A cube has length 4 cm.  
Work out the length of the diagonal AG. 

Give your answer in surd form.  
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Answers 

1 a 10.3 cm b 7.07 cm 

 c 58.6 mm d 8.94 cm 

2 a 4 3  cm b 2 21  cm 

 c 8 17  mm d 18 5  mm 

3 a 18 13  mm b 2 145  mm 

 c 42 2  mm d 6 89  mm 

4 95.3 mm 

5 64.0 km 

6 3 5  units 

7 4 3  cm 
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Proportion 
 

 A LEVEL LINKS 

 Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems 
 

Key points  

Two quantities are in direct proportion when, as one quantity 

increases, the other increases at the same rate. 

Their ratio remains the same. 

‘y is directly proportional to x’ is written as y   x. 

If y   x then y = kx, where k is a constant. 

When x is directly proportional to y, the graph is a straight 

line passing through the origin. 

 

Two quantities are in inverse proportion when, as one quantity 

increases, the other decreases at the same rate.  

‘y is inversely proportional to x’ is written as y   
1

x
.  

If y   
1

x
 then y = 

k

x
, where k is a constant. 

When x is inversely proportional to y the graph is the same shape as 

the graph of y = 1
x

 

Examples 

Example 1 y is directly proportional to x. 

When y = 16, x = 5. 

a Find x when y = 30. 

b Sketch the graph of the formula. 

a y x  

 

 y = kx 

 16 = k × 5 

 

 k = 3.2 

 

 y = 3.2x 

 

 When y = 30, 

 30 = 3.2 × x 

 x = 9.375 

 

1 Write y is directly proportional to x, 

using the symbol  . 

2 Write the equation using k. 

3 Substitute y = 16 and x = 5 into  

y = kx. 

4 Solve the equation to find k. 

 

5 Substitute the value of k back into 

the equation y = kx. 

 

6 Substitute y = 30 into y = 3.2x and 

solve to find x when y = 30. 
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b 

 

7 The graph of y = 3.2x is a straight 

line passing through (0, 0) with a 

gradient of 3.2. 

 

Example 2 y is directly proportional to x2. 

When x = 3, y = 45. 

a Find y when x = 5. 

b Find x when y = 20. 

a 
2y x  

 

 y = kx2 

 45 = k × 32 

 

 k = 5 

 y = 5x2 

 

 When x = 5, 

 y = 5 × 52 

 y = 125 

 

b 20 = 5 × x2 

 x2 = 4 

 x = ±2 

1 Write y is directly proportional to x2, 

using the symbol  . 

2 Write the equation using k. 

3 Substitute y = 45 and x = 3 into  

y = kx2. 

4 Solve the equation to find k. 

5 Substitute the value of k back into 

the equation y = kx2. 

 

6 Substitute x = 5 into y = 5x2 and 

solve to find y when x = 5. 

 

7 Substitute y = 20 into y = 5x2 and 

solve to find x when y = 4. 

 

 

Example 3 P is inversely proportional to Q. 

When P = 100, Q = 10. 

Find Q when P = 20. 

1
P

Q
  

k
P

Q
  

100
10

k
  

 k = 1000 

1000
P

Q
  

1000
20

Q
  

1000
50

20
Q    

1 Write P is inversely proportional  

to Q, using the symbol  . 

 

2 Write the equation using k. 

 

3 Substitute P = 100 and Q = 10. 

  

4 Solve the equation to find k. 

5 Substitute the value of k into 
k

P
Q

  

6 Substitute P = 20 into 
1000

P
Q

  and 

solve to find Q when P = 20. 
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Practice 

1 Paul gets paid an hourly rate. The amount of pay (£P) is directly 

proportional to the number of hours (h) he works.  

When he works 8 hours he is paid £56. 

If Paul works for 11 hours, how much is he paid? 

2 x is directly proportional to y.  

 x = 35 when y = 5. 

 a Find a formula for x in terms of y.  

 b Sketch the graph of the formula. 

 c Find x when y = 13. 

 d Find y when x = 63. 

3 Q is directly proportional to the square of Z.  

 Q = 48 when Z = 4. 

 a Find a formula for Q in terms of Z. 

 b Sketch the graph of the formula. 

 c Find Q when Z = 5. 

 d Find Z when Q = 300. 

4 y is directly proportional to the square of x. 

 x = 2 when y = 10. 

 a Find a formula for y in terms of x. 

 b Sketch the graph of the formula. 

 c Find x when y = 90. 

5 B is directly proportional to the square root of C.  

 C = 25 when B = 10. 

 a Find B when C = 64. 

 b Find C when B = 20. 

6 C is directly proportional to D. 

 C = 100 when D = 150. 

 Find C when D = 450. 

7 y is directly proportional to x. 

 x = 27 when y = 9. 

 Find x when y = 3.7. 

8 m is proportional to the cube of n. 

 m = 54 when n = 3. 

 Find n when m = 250. 

  

Hint 

Substitute the values 

given for P and h 

into the formula to 

calculate k. 
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Extend 

9 s is inversely proportional to t. 

 a Given that s = 2 when t = 2, find a formula for s in terms of t. 

 b Sketch the graph of the formula. 

 c Find t when s = 1. 

10 a is inversely proportional to b. 

a = 5 when b = 20. 

 a Find a when b = 50. 

 b Find b when a = 10. 

11 v is inversely proportional to w. 

w = 4 when v = 20. 

 a Find a formula for v in terms of w. 

 b Sketch the graph of the formula. 

 c Find w when v = 2. 

12 L is inversely proportional to W.  

L = 12 when W = 3. 

Find W when L = 6. 

13 s is inversely proportional to t. 

s = 6 when t = 12. 

 a Find s when t = 3. 

 b Find t when s = 18. 

14 y is inversely proportional to x2. 

y = 4 when x = 2. 

Find y when x = 4. 

15 y is inversely proportional to the square root of x. 

x = 25 when y = 1. 

Find x when y = 5. 

16 a is inversely proportional to b. 

a = 0.05 when b = 4. 

 a Find a when b = 2. 

 b Find b when a = 2. 
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Answers 

1 £77 

2 a x = 7y b  

 

 

 c 91 d 9 

3 a Q = 3Z2 b  

 

 

 c 75 d ±10 

4 a y = 2.5x2 b  

 c ±6 

 

5 a 16 b 100 

6 300 

7 11.1 

8 5 

9 a 
4

s
t

    b  

 c 4 

10 a 2 b 10 

11 a 
80

v
w

  b  

 c 40 
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12 6 

13 a 24 b 4 

14 1 

15 1 

16 a 0.1 b 0.1 
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Circle theorems 
 

 A LEVEL LINKS 

 Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid 
 

Key points 

A chord is a straight line joining two points on the 

circumference of a circle. 

So AB is a chord. 

 

 

 

 

 

  

A tangent is a straight line that touches the 

circumference of a circle at only one point. 

The angle between a tangent and the radius is 90°. 

 

 

 

 

 

 

 

 

Two tangents on a circle that meet at a point outside 

the circle are equal in length. 

So AC = BC. 

 

 

 

 

 

 

The angle in a semicircle is a right angle. 

So angle ABC = 90°. 

 

 

 

 

 

When two angles are subtended by the same arc, the 

angle at the centre of a circle is twice the angle at 

the circumference. 

So angle AOB = 2 × angle ACB. 
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Angles subtended by the same arc at the 

circumference are equal. This means that angles 

in the same segment are equal.  

So angle ACB = angle ADB and  

angle CAD = angle CBD. 

 

 

 

 

A cyclic quadrilateral is a quadrilateral with all four 

vertices on the circumference of a circle. 

Opposite angles in a cyclic quadrilateral total 180°. 

So x + y = 180° and p + q = 180°. 

 

 

 

 

The angle between a tangent and chord is equal to the 

angle in the alternate segment, this is known as 

the alternate segment theorem. 

So angle BAT = angle ACB. 

 

 

 

 

Examples 

Example 1 Work out the size of each angle  

marked with a letter. 

Give reasons for your answers.  

 

 

 

Angle a = 360° − 92° 

  = 268°  

as the angles in a full turn total 360°. 

 

Angle b = 268° ÷ 2 

  = 134° 

as when two angles are subtended by the 

same arc, the angle at the centre of a 

circle is twice the angle at the 

circumference. 

1 The angles in a full turn total 360°. 

 

 

 

2 Angles a and b are subtended by  

the same arc, so angle b is half of 

angle a. 
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Example 2 Work out the size of the angles in the triangle. 

  Give reasons for your answers. 

 

 

 

Angles are 90°, 2c and c. 

 

90° + 2c + c = 180° 

 90° + 3c = 180° 

 3c = 90° 

 c = 30° 

 2c = 60° 

 

The angles are 30°, 60° and 90° as the 

angle in a semi-circle is a right angle 

and the angles in a triangle total 180°. 

1 The angle in a semicircle is a right 

angle.  

2 Angles in a triangle total 180°. 

3 Simplify and solve the equation. 

 

Example 3 Work out the size of each angle marked with a letter. 

  Give reasons for your answers.  

 

 

 

Angle d = 55° as angles subtended by 

the same arc are equal. 

 

Angle e = 28° as angles subtended by 

the same arc are equal. 

1 Angles subtended by the same arc 

are equal so angle 55° and angle d 

are equal. 

2 Angles subtended by the same arc 

are equal so angle 28° and angle e 

are equal. 

 

Example 4 Work out the size of each angle marked with a letter. 

  Give reasons for your answers. 

 

 

 

 

Angle f = 180° − 94° 

 = 86°  

as opposite angles in a cyclic 

quadrilateral total 180°. 

 

 

1  Opposite angles in a cyclic 

quadrilateral total 180° so angle 94° 

and angle f total 180°. 

 

 

(continued on next page) 



 

87 

 

Angle g = 180° − 86° 

  = 84°  

as angles on a straight line total 180°. 

 

Angle h = angle f = 86° as angles 

subtended by the same arc are equal. 

2 Angles on a straight line total 180° 

so angle f and angle g total 180°. 

 

 

3 Angles subtended by the same arc 

are equal so angle f and angle h are 

equal. 

 

Example 5 Work out the size of each angle marked with a letter. 

  Give reasons for your answers. 

 

 

 

 

 

Angle i = 53° because of the alternate 

segment theorem. 

 

Angle j = 53° because it is the alternate 

angle to 53°. 

 

Angle k = 180° − 53° − 53° 

 = 74°  

as angles in a triangle total 180°. 

1 The angle between a tangent and 

chord is equal to the angle in the 

alternate segment. 

2 As there are two parallel lines, angle 

53° is equal to angle j because they 

are alternate angles. 

3 The angles in a triangle total 180°, 

so i + j + k = 180°. 

 

Example 6 XZ and YZ are two tangents to a circle with centre O. 

  Prove that triangles XZO and YZO are congruent. 

 

 

 

 

Angle OXZ = 90° and angle OYZ = 90° 

as the angles in a semicircle are right 

angles. 

 

OZ is a common line and is the 

hypotenuse in both triangles. 

 

OX = OY as they are radii of the same 

circle. 

 

So triangles XZO and YZO are 

congruent, RHS. 

For two triangles to be congruent you 

need to show one of the following. 

 All three corresponding sides are 

equal (SSS). 

 Two corresponding sides and the 

included angle are equal (SAS). 

 One side and two corresponding 

angles are equal (ASA).  

 A right angle, hypotenuse and a 

shorter side are equal (RHS). 
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Practice 

1 Work out the size of each angle marked with a letter. 

 Give reasons for your answers. 

 a   b    

 

 

 

 

 

 

 

 

 

  

 c   d 

 

 

 

 

 

 

 

 e   

 

 

 

 

 

 

 

 

2 Work out the size of each angle marked with a letter. 

 Give reasons for your answers. 

 a   b 

 

 

 

 

 

 

A 
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 c  

 

 

 

 

 

 

 d  

 

 

 

 

 

 

 

3 Work out the size of each angle marked with a letter. 

 Give reasons for your answers. 

 a  b 

 

 

 

 

 

 

 c  d  

 

 

 

 

 

  

Hint 

The reflex angle at point O and 

angle g are subtended by the 

same arc. So the reflex angle is 

twice the size of angle g. 

 

Hint 

Angle 18° and angle h are 

subtended by the same arc. 

Hint 

One of the angles is 

in a semicircle. 
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4 Work out the size of each angle marked with a letter. 

 Give reasons for your answers. 

 a  

 

 

 

 

 

 

 

 b  c 

 

 

 

 

 

 

 

 d   

 

 

 

 

 

 

 

 

 

 

Extend 

5 Prove the alternate segment theorem. 

  

Hint 

An exterior angle of a 

cyclic quadrilateral is 

equal to the opposite 

interior angle. 

Hint 

One of the angles 

is in a semicircle. 
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Answers 

1 a a = 112°, angle OAP = angle OBP = 90° and angles in a quadrilateral total 360°. 

 b b = 66°, triangle OAB is isosceles, Angle OAP = 90° as AP is tangent to the circle. 

 c c = 126°, triangle OAB is isosceles. 

  d = 63°, Angle OBP = 90° as BP is tangent to the circle. 

 d e = 44°, the triangle is isosceles, so angles e and angle OBA are equal. The angle OBP = 90° 

   as BP is tangent to the circle. 

  f = 92°, the triangle is isosceles. 

 e g = 62°, triangle ABP is isosceles as AP and BP are both tangents to the circle. 

  h = 28°, the angle OBP = 90°. 

2 a a = 130°, angles in a full turn total 360°. 

  b = 65°, the angle at the centre of a circle is twice the angle at the circumference. 

  c = 115°, opposite angles in a cyclic quadrilateral total 180°. 

 b d = 36°, isosceles triangle. 

  e = 108°, angles in a triangle total 180°. 

  f = 54°, angle in a semicircle is 90°. 

 c g = 127°, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle 

   at the circumference. 

 d h = 36°, the angle at the centre of a circle is twice the angle at the circumference. 

3 a a = 25°, angles in the same segment are equal. 

  b = 45°, angles in the same segment are equal. 

 b c = 44°, angles in the same segment are equal. 

  d = 46°, the angle in a semicircle is 90° and the angles in a triangle total 180°. 

 c e = 48°, the angle at the centre of a circle is twice the angle at the circumference. 

  f = 48°, angles in the same segment are equal. 

 d g = 100°, angles at a full turn total 360°, the angle at the centre of a circle is twice the angle 

   at the circumference. 

  h = 100°, angles in the same segment are equal. 

4 a a = 75°, opposite angles in a cyclic quadrilateral total 180°. 

  b = 105°, angles on a straight line total 180°. 

  c = 94°, opposite angles in a cyclic quadrilateral total 180°. 

 b d = 92°, opposite angles in a cyclic quadrilateral total 180°. 

  e = 88°, angles on a straight line total 180°. 

  f = 92°, angles in the same segment are equal. 

 c h = 80°, alternate segment theorem. 

 d g = 35°, alternate segment theorem and the angle in a semicircle is 90°. 
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5 Angle BAT = x. 

 Angle OAB = 90° − x because the angle between 

the tangent and the radius is 90°. 

 OA = OB because radii are equal. 

 Angle OAB = angle OBA because the base of 

isosceles triangles are equal. 

 Angle AOB = 180° − (90° − x) − (90° − x) = 2x 

because angles in a triangle total 180°. 

 Angle ACB = 2x ÷ 2 = x because the angle at the 

centre is twice the angle at the circumference. 
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Trigonometry in right-angled triangles 
 

 A LEVEL LINKS 

 Scheme of work: 4a. Trigonometric ratios and graphs 
 

 

Key points 

 In a right-angled triangle: 

o the side opposite the right angle is called the hypotenuse 

o the side opposite the angle θ is called the opposite 

o the side next to the angle θ is called the adjacent.  

 

 In a right-angled triangle: 

o the ratio of the opposite side to the hypotenuse is the sine of angle θ, 
opp

sin
hyp

   

o the ratio of the adjacent side to the hypotenuse is the cosine of angle θ, 
adj

cos
hyp

   

o the ratio of the opposite side to the adjacent side is the tangent of angle θ, 
opp

tan
adj

   

 

 If the lengths of two sides of a right-angled triangle are given, you can find a missing angle 

using the inverse trigonometric functions: sin−1, cos−1, tan−1. 

 

 The sine, cosine and tangent of some angles may be written exactly. 

 

 0 30° 45° 60° 90° 

sin 0 1
2

 2

2
 3

2
 1 

cos 1 3

2
 2

2
 1

2
 0 

tan 0 3

3
 1 3   
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Examples 

Example 1 Calculate the length of side x. 

  Give your answer correct to 3 significant figures. 

 

 

 
adj

cos
hyp

   

 
6

cos 25
x

   

6

cos 25
x 


 

x = 6.620 267 5... 

 

x = 6.62 cm 

1 Always start by labelling the sides. 

 

 

 

 

2 You are given the adjacent and the 

hypotenuse so use the cosine ratio. 

 

3 Substitute the sides and angle into 

the cosine ratio. 

4 Rearrange to make x the subject. 

 

5 Use your calculator to work out  

6 ÷ cos 25°. 

6 Round your answer to 3 significant 

figures and write the units in your 

answer. 

 

Example 2 Calculate the size of angle x. 

 Give your answer correct to 3 significant figures.  

 

 

 
opp

tan
adj

   

3
tan

4.5
x   

x = tan–1  3

4.5

 
 
 

 

x = 33.690 067 5... 

 

x = 33.7° 

1 Always start by labelling the sides. 

 

 

 

 

 

2 You are given the opposite and the 

adjacent so use the tangent ratio. 

3 Substitute the sides and angle into 

the tangent ratio. 

4 Use tan−1 to find the angle. 

5 Use your calculator to work out  

tan–1(3 ÷ 4.5). 

6 Round your answer to 3 significant 

figures and write the units in your 

answer. 
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Example 3 Calculate the exact size of angle x.  

 

 

 

 
opp

tan
adj

   

3
tan

3
x   

 

x = 30° 

1 Always start by labelling the sides. 

 

 

 

 

 

2 You are given the opposite and the 

adjacent so use the tangent ratio. 

 

3 Substitute the sides and angle into 

the tangent ratio. 

4 Use the table from the key points to 

find the angle. 

Practice 

1 Calculate the length of the unknown side in each triangle. 

 Give your answers correct to 3 significant figures. 

 a    b 

 

 

 

 

 

 c    d 

 

 

 

 

 

 e    f 
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2 Calculate the size of angle x in each triangle. 

 Give your answers correct to 1 decimal place. 

 a    b 

 

 

 

 

 

 c    d 

 

 

 

3 Work out the height of the isosceles triangle. 

 Give your answer correct to 3 significant figures. 

 

 

 

 

4 Calculate the size of angle θ. 

 Give your answer correct to 1 decimal place. 

 

 

 

5 Find the exact value of x in each triangle. 

 a    b 

 

 

 

 

 

 c    d 

  

 

  

Hint: 

Split the triangle into two 

right-angled triangles. 

Hint: 

First work out the length of the 

common side to both triangles, 

leaving your answer in surd form. 
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The cosine rule 
 

 A LEVEL LINKS 

 Scheme of work: 4a. Trigonometric ratios and graphs 

 Textbook: Pure Year 1, 9.1 The cosine rule 
 

Key points 

 a is the side opposite angle A. 

b is the side opposite angle B. 

c is the side opposite angle C. 

 

  

 You can use the cosine rule to find the length of a side when two sides and the included 

angle are given. 

 To calculate an unknown side use the formula 2 2 2 2 cosa b c bc A   . 

 

 Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three 

sides are given. 

 To calculate an unknown angle use the formula 
2 2 2

cos
2

b c a
A

bc

 
 . 

Examples 

Example 4 Work out the length of side w. 

  Give your answer correct to 3 significant figures. 

 

 

 

 

2 2 2 2 cosa b c bc A    

 
2 2 28 7 2 8 7 cos45w         

 

w2 = 33.804 040 51... 

w = 33.80404051  

w = 5.81 cm 

1 Always start by labelling the angles 

and sides. 

 

 

 

 

 

2 Write the cosine rule to find the 

side. 

3 Substitute the values a, b and A into 

the formula. 

4 Use a calculator to find w2 and  

then w. 

5 Round your final answer to 3 

significant figures and write the 

units in your answer. 
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Example 5 Work out the size of angle θ. 

 Give your answer correct to 1 decimal place.  

 

 

 

 
2 2 2

cos
2

b c a
A

bc

 
  

2 2 210 7 15
cos

2 10 7


 


 
 

76
cos

140



  

θ = 122.878 349... 

 

θ = 122.9° 

1 Always start by labelling the angles 

and sides. 

 

 

 

 

2 Write the cosine rule to find the 

angle. 

3 Substitute the values a, b and c into 

the formula. 

4 Use cos−1 to find the angle. 

5 Use your calculator to work out  

cos–1(–76 ÷ 140). 

6 Round your answer to 1 decimal 

place and write the units in your 

answer. 

 

Practice 

6 Work out the length of the unknown side in each triangle. 

 Give your answers correct to 3 significant figures. 

 a    b  

 

 

 

 

 

 

 c    d 
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7 Calculate the angles labelled θ in each triangle. 

 Give your answer correct to 1 decimal place. 

 a    b 

 

 

 

 

 

 

 c    d 

 

 

 

 

 

8 a Work out the length of WY. 

  Give your answer correct to  

  3 significant figures. 

 b Work out the size of angle WXY. 

  Give your answer correct to  

  1 decimal place. 
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The sine rule 
 

 A LEVEL LINKS 

 Scheme of work: 4a. Trigonometric ratios and graphs 

 Textbook: Pure Year 1, 9.2 The sine rule 
 

Key points 

 a is the side opposite angle A. 

b is the side opposite angle B. 

c is the side opposite angle C. 

 

 

 You can use the sine rule to find the length of a side when its opposite angle and another 

opposite side and angle are given. 

 To calculate an unknown side use the formula 
sin sin sin

a b c

A B C
  . 

 Alternatively, you can use the sine rule to find an unknown angle if the opposite side and 

another opposite side and angle are given. 

 To calculate an unknown angle use the formula 
sin sin sinA B C

a b c
  .  

Examples 

Example 6 Work out the length of side x. 

  Give your answer correct to 3 significant figures. 

 

 

 

 

sin sin

a b

A B
  

10

sin36 sin 75

x


 
 

10 sin36

sin 75
x

 



 

x = 6.09 cm 

1 Always start by labelling the angles 

and sides. 

 

 

 

 

 

 

2 Write the sine rule to find the side. 

 

3 Substitute the values a, b, A and B 

into the formula. 

 

4 Rearrange to make x the subject. 

5 Round your answer to 3 significant 

figures and write the units in your 

answer. 
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Example 7 Work out the size of angle θ. 

 Give your answer correct to 1 decimal place. 

 

 

 
sin sinA B

a b
  

sin sin127

8 14

 
  

8 sin127
sin

14


 
  

θ = 27.2° 

1 Always start by labelling the angles 

and sides. 

 

 

 

2 Write the sine rule to find the angle. 

 

3 Substitute the values a, b, A and B 

into the formula. 

4 Rearrange to make sin θ the subject. 

5 Use sin−1 to find the angle. Round 

your answer to 1 decimal place and 

write the units in your answer. 

Practice 

9 Find the length of the unknown side in each triangle. 

 Give your answers correct to 3 significant figures. 

 

 a    b 

 

 

 

 

 

 

 

 c    d 
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10 Calculate the angles labelled θ in each triangle. 

 Give your answer correct to 1 decimal place. 

 

 a    b 

 

 

 

 

 

 

 

 

 

 

 c    d 

 

 

 

 

 

 

11 a Work out the length of QS. 

  Give your answer correct to 3 significant figures. 

 b Work out the size of angle RQS. 

  Give your answer correct to 1 decimal place. 
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Areas of triangles 
 

 A LEVEL LINKS 

 Scheme of work: 4a. Trigonometric ratios and graphs 

 Textbook: Pure Year 1, 9.3 Areas of triangles 
 

Key points 

 a is the side opposite angle A. 

b is the side opposite angle B. 

c is the side opposite angle C. 

 The area of the triangle is 
1

sin
2

ab C . 

 

Examples 

Example 8 Find the area of the triangle.  

 

 

 

 

 

 

Area = 
1

sin
2

ab C  

Area = 
1

8 5 sin82
2
     

 

Area = 19.805 361... 

 

Area = 19.8 cm2 

1 Always start by labelling the sides 

and angles of the triangle. 

 

 

 

 

 

 

 

2 State the formula for the area of a 

triangle. 

3 Substitute the values of a, b and C 

into the formula for the area of a 

triangle. 

4 Use a calculator to find the area. 

 

5 Round your answer to 3 significant 

figures and write the units in your 

answer. 
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Practice 

12 Work out the area of each triangle. 

 Give your answers correct to 3 significant figures. 

 a   b 

 

 

 

 

 c   

 

 

 

 

  

  

13 The area of triangle XYZ is 13.3 cm2. 

 Work out the length of XZ. 

 

 

 

 

Extend 

14 Find the size of each lettered angle or side. 

 Give your answers correct to 3 significant figures.  

 a  b 

 

 

Hint: 

Rearrange the formula to make a side the subject. 

Hint: 

For each one, decide whether 

to use the cosine or sine rule. 
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 c  d 

 

 

 

15 The area of triangle ABC is 86.7 cm2. 

 Work out the length of BC. 

 Give your answer correct to 3 significant figures. 
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Answers 

1 a 6.49 cm b 6.93 cm c 2.80 cm  

 d 74.3 mm e 7.39 cm f 6.07 cm 

2 a 36.9° b 57.1° c 47.0° d 38.7° 

3 5.71 cm 

4 20.4° 

5 a 45° b 1 cm c 30° d 3  cm 

6 a 6.46 cm b 9.26 cm c 70.8 mm d 9.70 cm 

7 a 22.2° b 52.9° c 122.9° d 93.6° 

8 a 13.7 cm b 76.0° 

9 a 4.33 cm b 15.0 cm c 45.2 mm d 6.39 cm 

10 a 42.8° b 52.8° c 53.6° d 28.2° 

11 a 8.13 cm b 32.3° 

12 a 18.1 cm2 b 18.7 cm2 c 693 mm2 

13 5.10 cm 

14 a 6.29 cm b 84.3° c 5.73 cm d 58.8° 

15 15.3 cm 
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Rearranging equations 
 

 A LEVEL LINKS 

 Scheme of work: 6a. Definition, differentiating polynomials, second derivatives 

 Textbook: Pure Year 1, 12.1 Gradients of curves 
 

Key points 

 To change the subject of a formula, get the terms containing the subject on one side and 

everything else on the other side. 

 You may need to factorise the terms containing the new subject. 

Examples 

Example 1 Make t the subject of the formula v = u + at. 

v = u + at 

 

v − u = at 

v u
t

a


   

1 Get the terms containing t on one 

side and everything else on the other 

side. 

2 Divide throughout by a. 

 

Example 2 Make t the subject of the formula r = 2t − πt. 

r = 2t − πt 
 

 

r = t(2 − π) 

2

r
t





  

1 All the terms containing t are 

already on one side and everything 

else is on the other side. 

2 Factorise as t is a common factor. 

3 Divide throughout by 2 − π. 

 

Example 3 Make t the subject of the formula 
3

5 2

t r t
 . 

3

5 2

t r t
  

2t + 2r = 15t 

2r = 13t 

2

13

r
t    

1 Remove the fractions first by 

multiplying throughout by 10. 

2 Get the terms containing t on one 

side and everything else on the other 

side and simplify. 

3 Divide throughout by 13. 
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Example 4 Make t the subject of the formula 
3 5

1

t
r

t





. 

3 5

1

t
r

t





 

r(t − 1) = 3t + 5 

rt − r = 3t + 5 

rt − 3t = 5 + r 

t(r − 3) = 5 + r 

5

3

r
t

r





  

1 Remove the fraction first by 

multiplying throughout by t − 1. 

2 Expand the brackets. 

3 Get the terms containing t on one 

side and everything else on the other 

side. 

4 Factorise the LHS as t is a common 

factor. 

5 Divide throughout by r − 3. 

Practice 

Change the subject of each formula to the letter given in the brackets. 

1 C = πd   [d] 2 P = 2l + 2w   [w] 3 D = 
S

T
   [T] 

4 
q r

p
t


    [t] 5 u = at – 

1

2
t   [t] 6 V = ax + 4x   [x] 

7 
7 7 2

2 3

y x y 
    [y] 8 

2 1

3

a
x

a





   [a] 9 

b c
x

d


    [d] 

10 
7 9

2

g
h

g





   [g] 11 e(9 + x) = 2e + 1   [e] 12 

2 3

4

x
y

x





   [x] 

13 Make r the subject of the following formulae. 

 a A = πr2 b 
34

3
V r  c P = πr + 2r d 

22

3
V r h  

14 Make x the subject of the following formulae. 

 a 
xy ab

z cd
  b 

2

4 3cx z

d py


  

15 Make sin B the subject of the formula 
sin sin

a b

A B
  

16 Make cos B the subject of the formula b2 = a2 + c2 – 2ac cos B. 

Extend 

17 Make x the subject of the following equations. 

 a ( ) 1
p

sx t x
q

    b 
2

3
( 2 ) ( )

p p
ax y x y

q q
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Answers 

1 d = 
C


 2 

2

2

P l
w


  3 

S
T

D
  

4 
q r

t
p


  5 

2

2 1

u
t

a



 6 

4

V
x

a



 

7 y = 2 + 3x 8 
3 1

2

x
a

x





 9 

x

cb
d


  

10 
2 9

7

h
g

h





 11 

1

7
e

x



 12 

4 3

2

y
x

y





 

13 a 
A

r


  b 3
3

4

V
r


   

 c 
2

P
r





 d 

3

2

V
r

h
  

14 a 
abz

x
cdy

  b 
2

3

4

dz
x

cpy
  

15 
sin

sin
b A

B
a

  

16 
2 2 2

cos
2

a c b
B

ac

 
  

17 a 
q pt

x
q ps





 b 

3 2 (3 2 )

3 3

py pqy y q
x

p apq aq
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Volume and surface area of 3D shapes 
 

 A LEVEL LINKS 

 Scheme of work: 6b. Gradients, tangents, normals, maxima and minima 
 

Key points 

 Volume of a prism = cross-sectional area × length. 

 The surface area of a 3D shape is the total area  

of all its faces. 

 

 Volume of a pyramid = 
1

3
 × area of base × vertical height. 

 

 Volume of a cylinder = πr2h 

 Total surface area of a cylinder = 2πr2 + 2πrh 

 

 Volume of a sphere = 
34

3
r  

 Surface area of a sphere = 4πr2 

 

 Volume of a cone = 
21

3
r h  

 Total surface area of a cone = πrl + πr2 

 

Examples 

Example 1 The triangular prism has volume 504 cm3.  

  Work out its length. 

 

 

 

 

V = 1
2

bhl 

 

504 = 1
2

 × 9 × 4 × l 

 

504 = 18 × l 

l = 504 ÷ 18 

= 28 cm 

1 Write out the formula for the 

volume of a triangular prism. 

2 Substitute known values into the 

formula. 

3 Simplify 

4 Rearrange to work out l. 

5 Remember the units. 

Example 2 Calculate the volume of the 3D solid. 

 Give your answer in terms of π. 
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Total volume = volume of hemisphere  

+ Volume of cone  

    = 
1
2  of 

4
3 πr3 + 

1
3 πr2h 

 

Total volume = 
1
2  × 

4
3  × π × 53  

+ 
1
3  × π × 52 × 7 

 = 
425
3 π cm3 

1 The solid is made up of a 

hemisphere radius 5 cm and  

a cone with radius 5 cm and height 

12 − 5 = 7 cm. 

 

 

2 Substitute the measurements into the 

formula for the total volume. 

 

 

3 Remember the units. 

 

Practice 

1 Work out the volume of each solid. 

 Leave your answers in terms of π where appropriate. 

 a   b 

 

 

 

 c   d 

 

 

 

 e   f  a sphere with radius 7 cm 

 

 g a sphere with diameter 9 cm  h a hemisphere with radius 3 cm 



 

112 

 

 i   j 

 

 

  

 

2 A cuboid has width 9.5 cm, height 8 cm and volume 1292 cm3. 

 Work out its length. 

3 The triangular prism has volume 1768 cm3. 

 Work out its height. 

 

 

 

Extend 

4 The diagram shows a solid triangular prism. 

 All the measurements are in centimetres. 

 The volume of the prism is V cm3. 

 Find a formula for V in terms of x. 

 Give your answer in simplified form. 

 

 

5 The diagram shows the area of each of three  

 faces of a cuboid. 

 The length of each edge of the cuboid is a whole  

 number of centimetres. 

 Work out the volume of the cuboid. 
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6 The diagram shows a large catering size tin of beans  

 in the shape of a cylinder. 

 The tin has a radius of 8 cm and a height of 15 cm. 

 A company wants to make a new size of tin. 

 The new tin will have a radius of 6.7 cm. 

 It will have the same volume as the large tin. 

 Calculate the height of the new tin. 

 Give your answer correct to one decimal place. 

 

7 The diagram shows a sphere and a solid cylinder. 

 The sphere has radius 8 cm.  

 The solid cylinder has a base radius of 4 cm and  

 a height of h cm. 

 The total surface area of the cylinder is half the  

 total surface area of the sphere.  

 Work out the ratio of the volume of the sphere to 

 the volume of the cylinder.  

 Give your answer in its simplest form.  

 

8 The diagram shows a solid metal cylinder. 

 The cylinder has base radius 4x and height 3x. 

 The cylinder is melted down and made into  

 a sphere of radius r. 

 Find an expression for r in terms of x. 
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Answers 

1 a V = 396 cm3 b V = 75 000 cm3 

 c V = 402.5 cm3 d V = 200π cm3 

 e V = 1008π cm3 f V= 
1372

3
π  cm3 

 g V = 121.5π cm3 h V = 18π cm3 

 i V = 48π cm3 j V = 
98

3
π cm3 

2 17 cm 

3 17 cm 

4 V = x3 + 
17

2
x2 + 4x 

5 60 cm3 

6 21.4 cm 

7 32 : 9 

8 3 36r x  
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Area under a graph 
 

 A LEVEL LINKS 

 Scheme of work: 7b. Definite integrals and areas under curves 
 

Key points 

 To estimate the area under a curve, draw a chord between 

the two points you are finding the area between and straight 

lines down to the horizontal axis to create a trapezium.  

The area of the trapezium is an approximation for the area 

under a curve.  

 

 

 

 The area of a trapezium = 
1

( )
2

h a b  

 

 

 

Examples 

 

Example 1 Estimate the area of the region between the curve  

y = (3 − x)(2 + x) and the x-axis from x = 0 to x = 3.  

Use three strips of width 1 unit. 

 

 

 

 

 

 

 
 

x 0 1 2 3 

y = (3 − x)(2 + x) 6 6 4 0 

 

Trapezium 1: 

1 6 0 6a    , 1 6 0 6b     

Trapezium 2: 

2 6 0 6a    , 2 4 0 4b     

Trapezium 3: 

3 4 0 4a    , 3 0 0 0a     
 

  

1 Use a table to record the value of y 

on the curve for each value of x. 

 

2 Work out the dimensions of each 

trapezium. The distances between 

the y-values on the curve and the  

x-axis give the values for a. 

 

 

 

(continued on next page) 
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1 1

1 1
( ) 1(6 6) 6

2 2
h a b      

2 2

1 1
( ) 1(6 4) 5

2 2
h a b      

3 3

1 1
( ) 1(4 0) 2

2 2
h a b      

 

Area = 6 + 5 + 2 = 13 units2 
 

3 Work out the area of each 

trapezium. h = 1 since the width of 

each trapezium is 1 unit. 

 

 

 

 

4 Work out the total area. Remember 

to give units with your answer. 

 

Example 2 Estimate the shaded area.  

 Use three strips of width 2 units. 

 

 

 

 

 

 

 

 

x 4 6 8 10 

y 7 12 13 4 

 

x 4 6 8 10 

y 7 6 5 4 

 

Trapezium 1: 

1 7 7 0a    , 1 12 6 6b     

Trapezium 2: 

2 12 6 6a    , 2 13 5 8b     

Trapezium 3: 

3 13 5 8a    , 3 4 4 0a     

 

1 1

1 1
( ) 2(0 6) 6

2 2
h a b      

2 2

1 1
( ) 2(6 8) 14

2 2
h a b      

3 3

1 1
( ) 2(8 0) 8

2 2
h a b      

 

Area = 6 + 14 + 8 = 28 units2 

1 Use a table to record y on the curve 

for each value of x. 

 

2 Use a table to record y on the 

straight line for each value of x. 

 

3 Work out the dimensions of each 

trapezium. The distances between 

the y-values on the curve and the  

y-values on the straight line give the 

values for a. 

 

 

 

4 Work out the area of each 

trapezium. h = 2 since the width of 

each trapezium is 2 units. 

 

 

 

 

5 Work out the total area. Remember 

to give units with your answer. 
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Practice 

1 Estimate the area of the region between the curve y = (5 − x)(x + 2) and 

 the x-axis from x = 1 to x = 5.  

 Use four strips of width 1 unit. 

 

2 Estimate the shaded area shown 

 on the axes.  

 Use six strips of width 1 unit. 

 

 

 

 

 

 

 

 

 

 

3 Estimate the area of the region between the curve y = x2 − 8x + 18 and the x-axis  

 from x = 2 to x = 6.  

 Use four strips of width 1 unit. 

 

4 Estimate the shaded area.  

 Use six strips of width 
1

2
 unit. 

  

Hint:  

For a full answer, 

remember to 

include ‘units2’. 
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5 Estimate the area of the region between the curve y = −x2 − 4x + 5 and the  

 x-axis from x = −5 to x = 1.  

 Use six strips of width 1 unit. 

 

6 Estimate the shaded area.  

 Use four strips of equal width. 

 

 

 

 

 

 

7 Estimate the area of the region between the curve y = −x2 + 2x + 15 and the  

 x-axis from x = 2 to x = 5.  

 Use six strips of equal width. 

 

 

8 Estimate the shaded area.  

 Use seven strips of equal width. 
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Extend 

 

9 The curve y = 8x − 5 − x2 and the line y = 2  

 are shown in the sketch.  

 Estimate the shaded area using six strips  

 of equal width. 

 

 

 

 

 

 

 

10 Estimate the shaded area using five 

  strips of equal width. 
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Answers 

1 34 units2  

2 149 units2  

3 14 units2  

4 25
1

4
 units2  

5 35 units2  

6 42 units2  

7 26
7

8
 units2  

8 56 units2  

9 35 units2 

10 6
1

4
 units2  

 

 



Practice Baseline Assessment 

1 Simplify these expressions. 

a 
3 4

2

x x

x


 (1 mark) 

b 3 4(2 )x  (1 mark) 

c 

1
2

2
32

9

(27 )

x

x−
 (3 marks) 

2 Solve 2 42 4 512x x =  (2 marks) 

3 Find the value of x. 

 
4
3

1

256
x
−
=  (2 marks) 

4 a Write 240  in the form 15a , where a is an integer. (1 mark) 

b Expand and simplify (2 3)(5 2 3)− + . (2 marks) 

c Simplify 
2 5

3 5

+

−
 giving your answer in the form a b c+ , where a, b and c are  

rational numbers. (3 marks) 

5 The area of a triangle is given as (7 3 3)+ cm2. 

The base of the triangle is (5 3)− cm, and the perpendicular height is ( 3)p q+ cm. 

Find the values of p and q. (4 marks) 

6 Expand and simplify these expressions. 

a 3( 2 )x y−  (1 mark) 

b (2 3)(3 5)x x− +  (2 marks) 

c 
2( 2) ( 5)x x− +  (3 marks) 

7 Fully factorise these expressions. 

a 2 4xy x−  (1 mark) 

b 2 2 3x x+ −  (1 mark) 



8 Solve these equations. 

a 3 7 17x − =  (1 mark) 

b 2 6 5 0x x− + =  (2 marks) 

c 22 5 1 0x x− + =  (2 marks) 

9 Solve these pairs of simultaneous equations. 

a 2 7

3 8

x y

x y

+ =

− =

 (3 marks) 

b 3 1

3 6 1

y x

y x

= −

= +

 (3 marks) 

c 

2 2

2 9

17

x y

x y

− =

+ =

 (4 marks) 

10 Solve these inequalities. 

a 7x − 6 ⩽ 8 (1 mark) 

b 3x + 2 ⩾ 7x − 4 (2 marks) 

c 2 12 28x x+ − > 0 (2 marks) 

11 The function f is defined as f ( ) 5 2x x= +  

Find the value of f( 4)− . (1 mark) 

1a) 𝑥5 b) 16𝑥12 c) 𝑥
11

6  

2) ±2   

3) ±64   

4a) 4√15 b) 4 − √3 c) 
11

4
+

5

4
√5 

5) 𝑝 = 4, 𝑞 = 2   

6a) 3𝑥 − 6𝑦 b) 6𝑥2 + 𝑥 − 15 c) 𝑥3 + 𝑥2 − 16𝑥 + 20 

7a) 2𝑥(𝑦 − 2) b) (𝑥 + 3)(𝑥 − 1)  

8a) 8 b) 5 𝑜𝑟 1 c) 
5

4
±

1

4
√17 

9a) (3,1) b) (
4

3
, 3) c) (

4,16

5
)   𝑜𝑟   (−1, −

13

5
) 

10a) 𝑥 ≤ 2 b) 𝑥 ≤
3

2
 c) 𝑥 ≤ −14 𝑜𝑟 𝑥 > 2 

11a) −18   

 


