

ATOMS & IONS 1

1) Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure
²³ ₁₁ Na ⁺	ion	11	23	11	12	10	2,8
31 ₁₅ P							
		13	27			10	
	atom	2	4				
				12	12		2,8

2) a) Complete the table to show the electron structure of the following ions.

lon	F ⁻	Na⁺	Al ³⁺	K⁺	S ²⁻	H ⁺
Electron structure						
lon	O ²⁻	Ca ²⁺	Li ⁺	Mg ²⁺	Cl⁻	Be ²⁺
Electron structure						

- b) i) Complete the table below to show the electronic structure of some Group 0 elements (noble gases).
 - ii) Place the ions from part (a) into the correct row of the table.

Element	Electron structure	lons from part (a) with the same electronic structure
He		
Ne		
Ar		

c)	What is the link between the electronic structure of ions and Group 0 elements (noble gases)?

d) i) Complete the table with the ions from part 2a (except H⁺). Ions for Group 1 have been done for you.

Group	1	2	3	4	5	6	7	0
lons	Li ⁺ Na ⁺ K ⁺							
Charge	+1							

II) Predict	the charge t	nat the i	rollowina	ions would	nave usino	i the i	-erioaic	lable and	vour table.
-------------	--------------	-----------	-----------	------------	------------	---------	----------	-----------	-------------

strontium ions iodide ions rubidium ions

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Give electron structure of atoms			Link between ions and PT group		
Good SPG			Give electron structure of ions			Can predict ion charges		
Can work with PNE numbers			Link between ions and Group 0					

© www.CHEMSHEETS.co.uk 30-April-2018 Chemsheets GCSE 1008

ATOMS & IONS 1

1) Complete the following table about some atoms and ions. The first row has been done for you.

Particle	Atom or ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron structure	
²³ ₁₁ Na ⁺	ion	11	23	11	12	10	2,8	
³¹ ₁₅ P	atom	15	31	15	16	15	2,8,5	
²⁷ ₁₃ Al ³⁺	ion	on 13	27	13	14	10	2,8,3	
⁴ ₂ He	atom	2	4	2	2	2	2	
²⁴ ₁₂ Mg ²⁺	ion	12	24	12	12	10	2,8	

2) a) Complete the table to show the electron structure of the following ions.

Ion	F ⁻	Na⁺	Al ³⁺	K⁺	S ²⁻	H ⁺
Electron structure	2,8	2,8	2,8	2,8,8	2,8,8	0
lon	O ²⁻	Ca ²⁺	Li ⁺	Mg ²⁺	Cl⁻	Be ²⁺
Electron structure	2,8	2,8,8	2	2,8	2,8,8	2

- b) i) Complete the table below to show the electronic structure of some Group 0 elements (noble gases).
 - ii) Place the ions from part (a) into the correct row of the table.

Element	Electron structure	lons from part (a) with the same electronic structure
He	2	Li ⁺ Be ²⁺
Ne	2,8	F ⁻ O ²⁻ Na ⁺ Mg ²⁺ Al ³⁺
Ar	2,8,8	S²- Cl⁻ K⁺ Ca²+

c) What is the link between the electronic structure of ions and Group 0 elements (noble gases)?

lons have the same electron structure as the noble gases

d) i) Complete the table with the ions from part 2a (except H⁺). Ions for Group 1 have been done for you.

Group	1	2	3	4	5	6	7	0
Ions	Li ⁺ Na ⁺ K ⁺	Be ²⁺ Mg ²⁺ Ca ²⁺	Al ³⁺			O ²⁻ S ²⁻	CI	
Charge	+1	+2	+3			-2	-1	

ii) Predict the charge that the following ions would have using the Periodic Table and your table.

strontium ions +2 iodide ions -1 rubidium ions +1

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Give electron structure of atoms			Link between ions and PT group		
Good SPG			Give electron structure of ions			Can predict ion charges		
Can work with PNE numbers			Link between ions and Group 0					

© www.CHEMSHEETS.co.uk 30-April-2018 Chemsheets GCSE 1008

NAMING SUBSTANCES 2

Name the following substances.

Formula	Name
O ₂	
CuO	
Cu	
CuSO ₄	
CuS	
CuCO ₃	
FeSO ₄	
Fe(NO ₃) ₂	
N ₂	
H ₂ SO ₄	
СО	
CO ₂	
NO ₂	
HCI	
KHCO ₃	
K₂CO₃	
Mg	
AgF	
Ca(OH) ₂	
CaCO ₃	

Name	Formula
Al ₂ O ₃	
Na	
Al ₂ (SO ₄) ₃	
HNO ₃	
l ₂	
Ni	
Al	
Na ₂ O	
NaOH	
NaBr	
Na ₂ CO ₃	
Не	
CH ₄	
NH ₃	
NH₄Br	
H₂Te	
SnCl ₄	
WO ₃	
HgO	
TiC	

NAMING SUBSTANCES 2

Name the following substances.

Formula	Name
O ₂	Oxygen
CuO	Copper oxide
Cu	Copper
CuSO ₄	Copper sulfate
CuS	Copper sulfide
CuCO ₃	Copper carbonate
FeSO ₄	Iron sulfate
Fe(NO ₃) ₂	Iron nitrate
N ₂	nitrogen
H ₂ SO ₄	Sulfuric acid
СО	Carbon monoxide
CO ₂	Carbon dioxide
NO ₂	Nitrogen dioxide (nitrogen oxide)
HCI	Hydrochloric acid
KHCO ₃	Potassium hydrogencarbonate
K ₂ CO ₃	Potassium carbonate
Mg	Magnesium
AgF	Silver fluoride
Ca(OH) ₂	Calcium hydroxide
CaCO ₃	Calcium carbonate

Name	Formula
Al ₂ O ₃	Aluminium oxide
Na	Sodium
Al ₂ (SO ₄) ₃	Aluminium sulfate
HNO ₃	Nitric acid
l ₂	lodine
Ni	Nickel
Al	Aluminium
Na ₂ O	Sodium oxide
NaOH	Sodium hydroxide
NaBr	Sodium bromide
Na ₂ CO ₃	Sodium carbonate
Не	Helium
CH₄	methane
NH ₃	Ammonia
NH ₄ Br	Ammonium bromide
H ₂ Te	Hydrogen telluride
SnCl₄	Tin chloride
WO ₃	Tungsten oxide
HgO	Mercury oxide
TiC	Titanium carbide

1) Ca +
$$H_2O \rightarrow Ca(OH)_2 + H_2$$

2)
$$NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$$

3)
$$FeCl_3 + NaOH \rightarrow Fe(OH)_3 + NaCl$$

4) Al +
$$H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2$$

5) MgO + HNO₃
$$\rightarrow$$
 Mg(NO₃)₂ + H₂O

6) Ba(OH)₂ + H₂SO₄
$$\rightarrow$$
 BaSO₄ + H₂O

7)
$$Ca(OH)_2 + HNO_3 \rightarrow Ca(NO_3)_2 + H_2O$$

8)
$$PCl_3 + H_2O \rightarrow P(OH)_3 + HCl$$

9) Cu + HNO₃
$$\rightarrow$$
 Cu(NO₃)₂ + H₂O + NO₂

10)
$$Pb_3O_4 + HNO_3 \rightarrow Pb(NO_3)_2 + PbO_2 + H_2O$$

1) Ca +
$$2 H_2O \rightarrow Ca(OH)_2 + H_2$$

2) 2 NH₃ + H₂SO₄
$$\rightarrow$$
 (NH₄)₂SO₄

3) FeCl₃ +
$$\frac{3}{3}$$
 NaOH \rightarrow Fe(OH)₃ + $\frac{3}{3}$ NaCl

4) 2 Al + 3
$$H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3 H_2$$

5) MgO +
2
 HNO₃ \rightarrow Mg(NO₃)₂ + H₂O

6)
$$Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 + 2 H_2O$$

7)
$$Ca(OH)_2 + 2 HNO_3 \rightarrow Ca(NO_3)_2 + 2 H_2O$$

8)
$$PCI_3 + 3H_2O \rightarrow P(OH)_3 + 3HCI$$

9) Cu +
$$\frac{4}{4}$$
 HNO₃ \rightarrow Cu(NO₃)₂ + $\frac{2}{2}$ H₂O + $\frac{2}{2}$ NO₂

10)
$$Pb_3O_4 + 4 HNO_3 \rightarrow 2 Pb(NO_3)_2 + PbO_2 + 2 H_2O$$

1) Na +
$$H_2O \rightarrow NaOH + H_2$$

2) KOH +
$$H_2SO_4 \rightarrow K_2SO_4 + H_2O$$

3)
$$Mg(NO_3)_2$$
 + NaOH \rightarrow $Mg(OH)_2$ + NaNO₃

4) NO +
$$H_2O$$
 + O_2 \rightarrow HNO_3

5)
$$C_5H_{12} + O_2 \rightarrow CO_2 + H_2O$$

6)
$$Br_2 + Nal \rightarrow NaBr + I_2$$

7)
$$K_2CO_3 + HNO_3 \rightarrow KNO_3 + CO_2 + H_2O$$

8) NaHCO₃
$$\rightarrow$$
 Na₂CO₃ + H₂O + CO₂

9)
$$ZnCO_3 \rightarrow ZnO + CO_2$$

10)
$$H_3PO_4$$
 + NaOH \rightarrow Na₃PO₄ + H_2O

1) 2 Na + 2
$$H_2O \rightarrow$$
 2 NaOH + H_2

2) **2** KOH +
$$H_2SO_4 \rightarrow K_2SO_4 + 2 H_2O$$

3)
$$Mg(NO_3)_2$$
 + 2 NaOH \rightarrow $Mg(OH)_2$ + 2 NaNO₃

4) 4 NO + 2
$$H_2O$$
 + 3 O_2 \rightarrow 4 HNO_3

5)
$$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$$

6)
$$Br_2 + 2 Nal \rightarrow 2 NaBr + I_2$$

7)
$$K_2CO_3 + 2 HNO_3 \rightarrow 2 KNO_3 + CO_2 + H_2O$$

8) 2 NaHCO₃
$$\rightarrow$$
 Na₂CO₃ + H₂O + CO₂

9)
$$ZnCO_3 \rightarrow ZnO + CO_2$$

10)
$$H_3PO_4$$
 + 3 NaOH \rightarrow Na₃PO₄ + 3 H_2O

MOLES (A)

1	Ca	alculate the relative formula mass (M_r) of each of the following substances.
	а	CO ₂
	b	Mg
	С	sodium oxide
	d	calcium nitrate
2		alculate the mass in grams of one atom of ¹⁹ F. Give your answer in standard form to 3 significant figures. see Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$)
3		ne molecule of water has a mass of $2.99 \times 10^{-23} \text{ g}$. Use this to calculate the mass in grams of two moles of ater molecules.
	(th	ne Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$)

© www.CHEMSHEETS.co.uk 18-Oct-2018 Chemsheets GCSE 1294

MOLES (F)

.2 g of chromium (Cr) reacts with 4.8 g of oxygen (O ₂) to form chromium oxide. Find the molar reacting rastween chromium and oxygen.
nolar ratios and use this to give the equation for the reaction.

1 5.2 g of chromium (Cr) reacts with 4.8 g of oxygen (O₂) to form chromium oxide. Find the molar reacting ratio between chromium and oxygen.

moles
$$Cr = \frac{mass}{M_r} = \frac{5.2}{52} = 0.1 \text{ mol}$$

moles $O_2 = \frac{mass}{M_r} = \frac{4.8}{32} = 0.15 \text{ mol}$
reacting ratio $Cr : O_2 = 0.10 : 0.15 = \frac{0.10}{0.10} : \frac{0.15}{0.10} = 1 : 1.5 = 2 : 3$
 $\therefore 2Cr + 3O_2 \rightarrow$

2 0.48 g of hydrazine (N₂H₄) decomposes to form 0.14 g of nitrogen (N₂) and 0.34 g of ammonia (NH₃). Find the molar ratios and use this to give the equation for the reaction.

moles
$$N_2H_4 = \frac{mass}{M_r} = \frac{0.48}{32} = 0.015$$
 mol
moles $N_2 = \frac{mass}{M_r} = \frac{0.14}{28} = 0.005$ mol
moles $NH_3 = \frac{mass}{M_r} = \frac{0.34}{17} = 0.020$ mol

reacting ratio
$$N_2H_4$$
: N_2 : $NH_3 = 0.015:0.005:0.020 = $\frac{0.015}{0.005}:\frac{0.005}{0.005}:\frac{0.020}{0.005}:\frac{0.020}{0.005}=3:1:4$$

$$\therefore 3N_2H_4 \rightarrow N_2 + 4NH_3$$

© www.CHEMSHEETS.co.uk 08-Dec-2018 Chemsheets GCSE 1306

MOLES (G)

The volume of one mole of any gas at room temperature and pressure is 24 dm³ 1 What is the volume of 0.50 moles of hydrogen gas (H₂) at room temperature and pressure? How many moles in 1.8 dm³ of helium gas (He) at room temperature and pressure? What is the volume of 7.0 g of nitrogen gas (N₂) at room temperature and pressure? What volume of oxygen gas reacts with 100 cm³ of butane gas, with both gases measured at the same temperature and pressure? $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(I)$ What volume of hydrogen gas, measured at room temperature and pressure, is formed when 6.9 g of sodium reacts with water? $2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g)$

The volume of one mole of any gas at room temperature and pressure is 24 dm³

1 What is the volume of 0.50 moles of hydrogen gas (H₂) at room temperature and pressure?

volume of
$$H_2 = 24 \text{ x moles} = 24 \text{ x } 0.50 = 12 \text{ dm}^3$$

2 How many moles in 1.8 dm³ of helium gas (He) at room temperature and pressure?

moles of He =
$$\frac{volume}{24} = \frac{1.8}{24} = 0.075 \text{ mol}$$

3 What is the volume of 7.0 g of nitrogen gas (N₂) at room temperature and pressure?

moles of
$$N_2 = \frac{mass}{M_r} = \frac{7.0}{28} = 0.25 \text{ mol}$$

volume of
$$N_2 = 24 \text{ x moles} = 24 \text{ x } 0.25 = 6 \text{ dm}^3$$

4 What volume of oxygen gas reacts with 100 cm³ of butane gas, with both gases measured at the same temperature and pressure?

$$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$$

volume of
$$O_2 = \frac{13}{2}$$
 x moles $C_4H_{10} = \frac{13}{2}$ x 100 = 650 cm³

5 What volume of hydrogen gas, measured at room temperature and pressure, is formed when 6.9 g of sodium reacts with water?

$$2Na(s) + 2H_2O(I) \rightarrow 2NaOH(aq) + H_2(g)$$

moles of Na =
$$\frac{mass}{M_r}$$
 = $\frac{6.9}{23}$ = 0.30 mol

moles of
$$H_2 = \frac{1}{2} \times 0.30 = 0.15 \text{ mol}$$

volume of
$$H_2 = 24 \text{ x moles} = 24 \text{ x } 0.15 = 3.6 \text{ dm}^3$$

© www.CHEMSHEETS.co.uk 14-Dec-2018 Chemsheets GCSE 1308

MOLES (H)

1	In a titration, 25.0 cm³ of 0.200 mol/dm³ sodium hydroxide solution reacted with 28.5 cm³ of sulfuric acid. Find the concentration of the sulfuric acid in mol/dm³.
	$2NaOH(aq) + H2SO4(aq) \rightarrow Na2SO4(aq) + 2H2O(I)$
2	In a titration, 25.0 cm ³ of 0.040 mol/dm ³ barium hydroxide solution reacted with 21.6 cm ³ of hydrochloric acid. Find the concentration of the hydrochloric acid in mol/dm ³ and g/dm ³ .
	$Ba(OH)_2(aq) + 2HCl(aq) \rightarrow BaCl_2(aq) + 2H_2O(l)$

1 In a titration, 25.0 cm³ of 0.200 mol/dm³ sodium hydroxide solution reacted with 28.5 cm³ of sulfuric acid. Find the concentration of the sulfuric acid in mol/dm³.

$$2 \text{NaOH}(\text{aq}) + \text{H}_2 \text{SO}_4(\text{aq}) \rightarrow \text{Na}_2 \text{SO}_4(\text{aq}) + 2 \text{H}_2 \text{O}(\text{I})$$

$$25.0 \text{ cm}^3 \quad 28.5 \text{ cm}^3$$

$$0.200 \text{ mol/dm}^3$$

$$\text{moles NaOH} = \text{conc x volume } (\text{dm}^3) = 0.200 \text{ x} \quad \frac{25.0}{1000} = 0.0050 \text{ mol}$$

$$\text{moles H}_2 \text{SO}_4 = \frac{\text{moles NaOH}}{2} = \frac{0.0050}{2} = 0.0025 \text{ mol}$$

$$\text{concentration H}_2 \text{SO}_4 = \frac{\text{moles NaOH}}{\text{volume } (\text{dm}^3)} = \frac{0.0025}{\frac{28.5}{1000}} = 0.0877 \text{ mol/dm}^3$$

2 In a titration, 25.0 cm³ of 0.040 mol/dm³ barium hydroxide solution reacted with 21.6 cm³ of hydrochloric acid. Find the concentration of the hydrochloric acid in mol/dm³ and g/dm³.

Ba(OH)₂(aq) + 2HCl(aq)
$$\rightarrow$$
 BaCl₂(aq) + 2H₂O(I)
25.0 cm³ 21.6 cm³
0.050 mol/dm³

moles Ba(OH)₂ = conc x volume (dm³) = 0.040 x $\frac{25.0}{1000}$ = 0.00100 mol

moles HCl = $2 \times \text{moles Ba}(OH)_2 = 2 \times 0.00100 \text{ mol} = 0.00200 \text{ mol}$

concentration HCl in mol/dm³ = $\frac{\text{moles NaOH}}{\text{volume (dm}^3)}$ = $\frac{0.00200}{\frac{21.6}{1000}}$ = 0.0926 mol/dm³

concentration HCl in g/dm³ = M_r x concentration HCl in mol/dm³ = 0.0926 x 36.5 = 3.38 g/dm³

1 In a titration, 25.0 cm³ of 0.200 mol/dm³ sodium hydroxide solution reacted with 28.5 cm³ of sulfuric acid. Find the concentration of the sulfuric acid in mol/dm³.

$$2 \text{NaOH}(\text{aq}) + \text{H}_2 \text{SO}_4(\text{aq}) \rightarrow \text{Na}_2 \text{SO}_4(\text{aq}) + 2 \text{H}_2 \text{O}(\text{I})$$

$$25.0 \text{ cm}^3 \quad 28.5 \text{ cm}^3$$

$$0.200 \text{ mol/dm}^3$$

$$\text{moles NaOH} = \text{conc x volume } (\text{dm}^3) = 0.200 \text{ x} \quad \frac{25.0}{1000} = 0.0050 \text{ mol}$$

$$\text{moles H}_2 \text{SO}_4 = \frac{\text{moles NaOH}}{2} = \frac{0.0050}{2} = 0.0025 \text{ mol}$$

$$\text{concentration H}_2 \text{SO}_4 = \frac{\text{moles NaOH}}{\text{volume } (\text{dm}^3)} = \frac{0.0025}{\frac{28.5}{1000}} = 0.0877 \text{ mol/dm}^3$$

2 In a titration, 25.0 cm³ of 0.040 mol/dm³ barium hydroxide solution reacted with 21.6 cm³ of hydrochloric acid. Find the concentration of the hydrochloric acid in mol/dm³ and g/dm³.

Ba(OH)₂(aq) + 2HCl(aq)
$$\rightarrow$$
 BaCl₂(aq) + 2H₂O(I)
25.0 cm³ 21.6 cm³
0.050 mol/dm³

moles Ba(OH)₂ = conc x volume (dm³) = 0.040 x $\frac{25.0}{1000}$ = 0.00100 mol

moles HCl = $2 \times \text{moles Ba}(OH)_2 = 2 \times 0.00100 \text{ mol} = 0.00200 \text{ mol}$

concentration HCl in mol/dm³ = $\frac{\text{moles NaOH}}{\text{volume (dm}^3)}$ = $\frac{0.00200}{\frac{21.6}{1000}}$ = 0.0926 mol/dm³

concentration HCl in g/dm³ = M_r x concentration HCl in mol/dm³ = 0.0926 x 36.5 = 3.38 g/dm³

A student carried out a titration to find the concentration of a solution of calcium hydroxide. In each titration, the student used 25.0 cm³ of the calcium hydroxide solution and titrated it against 0.0100 mol/dm³ hydrochloric acid solution.

$$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(I)$$

The student's results are shown in the table.

titration	1	2	3
start reading / cm ³	0.00	23.15	0.10
end reading / cm ³	23.15	47.05	23.90
volume added / cm ³			

measurement.										this
Find the concen	tration of the	calcium hyc	Iroxide in r	mol/dm ³ and	g/dm ³ .	Give you	ur ansv	vers to 3	signifi	cant
Outline the key s	steps in carryi	ng out this tit	ration.							
f	Outline the key s	Dutline the key steps in carryi	Dutline the key steps in carrying out this titi	Dutline the key steps in carrying out this titration.	Dutline the key steps in carrying out this titration.	Dutline the key steps in carrying out this titration.	Dutline the key steps in carrying out this titration.	Dutline the key steps in carrying out this titration.	Dutline the key steps in carrying out this titration.	

© www.CHEMSHEETS.co.uk 16-Jan-2019 Chemsheets GCSE 1313

A student carried out a titration to find the concentration of a solution of calcium hydroxide. In each titration, the student used 25.0 cm³ of the calcium hydroxide solution and titrated it against 0.0100 mol/dm³ hydrochloric acid solution.

$$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(I)$$

The student's results are shown in the table.

titration	1	2	3
start reading / cm ³	0.00	23.15	0.10
end reading / cm ³	23.15	47.05	23.90
volume added / cm ³	23.15	23.90	23.80

a Find the mean titre to the appropriate number of significant figures and give the uncertainty in this measurement.

mean =
$$\frac{23.90 + 23.80}{2}$$
 = 23.85 ± 0.05 cm³

b Find the concentration of the calcium hydroxide in mol/dm³ and g/dm³. Give your answers to 3 significant figures.

moles HCl =
$$conc x \ volume \ (dm^3) = 0.0100 \ x \ \frac{23.85}{1000} = 0.0002385 \ mol$$

moles $Ca(OH)_2 = \frac{moles \ HCl}{2} = \frac{0.0002385}{2} = 0.00011925 \ mol$

concentration $Ca(OH)_2$ in $mol/dm^3 = \frac{moles \ Ca(OH)_2}{volume \ (dm^3)} = \frac{0.00011925}{\frac{25.0}{1000}} = 0.00477 \ mol/dm^3$

concentration $Ca(OH)_2$ in $g/dm^3 = M_r \ x \ concentration \ Ca(OH)_2$ in mol/dm^3
 $= 0.00477 \ x \ 74 = 0.353 \ g/dm^3$

- **c** Outline the key steps in carrying out this titration.
 - using a pipette
 - place 25.0 cm³ of calcium hydroxide in a conical flask
 - add an indicator
 - put acid in a burette
 - · add acid to flask until indicator changes colour
 - · add drop by drop near the end
 - record results
 - repeat

© www.CHEMSHEETS.co.uk 16-Jan-2019 Chemsheets GCSE 1313

1 Calculate the relative formula mass (M_r) of each of the following substances.

a
$$CO_2$$
 12 + 2(16) = 44

c sodium oxide
$$Na_2O$$
 2(23) + 16 = 62

d calcium nitrate
$$Ca(NO_3)_2$$
 40 + 2(14) + 6(16) = 164

2 Calculate the mass in grams of one atom of 19 F. Give your answer in standard form to 3 significant figures. (the Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$)

mass of one atom =
$$\frac{19}{6.022 \times 10^{23}}$$
 = 3.16 x 10⁻²³ g

3 One molecule of water has a mass of 2.99 x 10⁻²³ g. Use this to calculate the mass in grams of two moles of water molecules.

mass of two moles =
$$2 \times 6.022 \times 10^{23} \times 2.99 \times 10^{-23} = 36 \text{ g}$$

© www.CHEMSHEETS.co.uk 18-Oct-2018 Chemsheets GCSE 1294

1	What is the mass of one mole of CO ₂ ?				
2	How many moles are there in 99 g of H_2O ?				
3	What is the mass of 0.250 moles of N_2 ?				
4	How many moles are there in 1.2 kg of Mg?				
5	Calculate the relative formula mass (M_r) of each of the following substances.				
	a $Mg(NO_3)_2$				
	b oxygen				
	c potassium sulfate				
6	Calculate the mass in grams of one atom of ^{31}P . Give your answer in standard form to 3 significant figures. (the Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$)				

© www.CHEMSHEETS.co.uk 23-Oct-2018 Chemsheets GCSE 1296

1 What is the mass of one mole of CO₂?

$$M_r = 12 + 2(16) = 44$$

mass of 1 mole of $CO_2 = 44$ g

2 How many moles are there in 99 g of H₂O?

$$M_r = 2(1) + 16 = 18$$

moles = $\frac{mass}{M_r} = \frac{99}{18} = 5.5$ moles

3 What is the mass of 0.250 moles of N_2 ?

$$M_r = 2(14) = 28$$

mass = $M_r \times \text{moles} = 28 \times 0.250 = 7.0 \text{ g}$

4 How many moles are there in 1.2 kg of Mg?

$$M_r = 24$$
moles = $\frac{mass}{M_r} = \frac{1200}{24} = 50$ moles

5 Calculate the relative formula mass (M_r) of each of the following substances.

a
$$Mg(NO_3)_2$$
 $M_r = 24 + 2(14) + 6(16) = 148$
b oxygen O_2 $M_r = 2(16) = 32$
c potassium sulfate K_2SO_4 $M_r = 2(39) + 32 + 4(16) = 174$

6 Calculate the mass in grams of one atom of 31 P. Give your answer in standard form to 3 significant figures. (the Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$)

mass of one atom =
$$\frac{31}{6.022 \times 10^{23}}$$
 = 5.15 x 10⁻²³ g

© www.CHEMSHEETS.co.uk 23-Oct-2018 Chemsheets GCSE 1296

MOLES (C)

1	What mass of iron is formed when 240 g of iron(III) oxide reacts with carbon monoxide?
	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
2	What mass of oxygen reacts with 9.2 g of sodium?
	$4Na + O_2 \rightarrow 2Na_2O$
3	How many moles in each of the following?
	a 12 mg of magnesium
	b 8.0 kg of oxygen
1	What is the mass of each of the following?
_	
	a 0.100 moles of calcium hydroxide
	b 0.025 moles of aluminium sulfate
	5 0.020 moles of diaminium sundis

1 What is the mass of one mole of CO₂?

$$M_r = 12 + 2(16) = 44$$

mass of 1 mole of $CO_2 = 44$ g

2 How many moles are there in 99 g of H₂O?

$$M_r = 2(1) + 16 = 18$$

moles = $\frac{mass}{M_r} = \frac{99}{18} = 5.5$ moles

3 What is the mass of 0.250 moles of N_2 ?

$$M_r = 2(14) = 28$$

mass = $M_r \times \text{moles} = 28 \times 0.250 = 7.0 \text{ g}$

4 How many moles are there in 1.2 kg of Mg?

$$M_r = 24$$
moles = $\frac{mass}{M_r} = \frac{1200}{24} = 50$ moles

5 Calculate the relative formula mass (M_r) of each of the following substances.

a
$$Mg(NO_3)_2$$
 $M_r = 24 + 2(14) + 6(16) = 148$
b oxygen O_2 $M_r = 2(16) = 32$
c potassium sulfate K_2SO_4 $M_r = 2(39) + 32 + 4(16) = 174$

6 Calculate the mass in grams of one atom of 31 P. Give your answer in standard form to 3 significant figures. (the Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$)

mass of one atom =
$$\frac{31}{6.022 \times 10^{23}}$$
 = 5.15 x 10⁻²³ g

© www.CHEMSHEETS.co.uk 23-Oct-2018 Chemsheets GCSE 1296

1 What mass of iron is formed when 240 g of iron(III) oxide reacts with carbon monoxide?

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

moles
$$Fe_2O_3 = \frac{mass}{M_{\Gamma}} = \frac{240}{160} = 1.5 \text{ moles}$$

moles Fe =
$$2 \times 1.5 = 3.0$$
 moles

mass Fe =
$$M_r$$
 x moles = $56 \times 3.0 = 168 g$

2 What mass of oxygen reacts with 9.2 g of sodium?

$$4Na + O_2 \rightarrow 2Na_2O$$

moles Na =
$$\frac{\text{mass}}{\text{M}_{\text{r}}}$$
 = $\frac{9.2}{23}$ = 0.4 moles

$$moles O_2 = \frac{0.4}{4} = 0.1 moles$$

mass
$$O_2 = M_r x$$
 moles = 32 x 0.1 = 3.2 g

3 How many moles in each of the following?

moles Mg =
$$\frac{\text{mass}}{\text{M}_{\text{r}}}$$
 = $\frac{0.012}{24}$ = 0.0005 moles

moles
$$O_2 = \frac{mass}{M_r} = \frac{8000}{32} = 250 \text{ moles}$$

4 What is the mass of each of the following?

mass
$$Ca(OH)_2 = M_r x moles = 74 x 0.100 = 7.4 g$$

mass
$$Al_2(SO_4)_3 = M_r x moles = 342 x 0.025 = 8.55 g$$

© www.CHEMSHEETS.co.uk 09-Nov-2018 Chemsheets GCSE 1297

1 a What is the maximum mass of potassium fluoride that can be formed when 1.56 g of potassium reacts with fluorine?

$$2K + F_2 \rightarrow 2KF$$

moles K =
$$\frac{\text{mass}}{M_{\rm r}}$$
 = $\frac{1.56}{39}$ = 0.04 moles

moles KF = 0.04 moles

mass KF = M_r x moles = $58 \times 0.4 = 2.32 g$

b In an experiment, a student reacted 1.56 g of potassium with fluorine and made 1.48 g of potassium fluoride. Calculate the percentage yield.

% yield =
$$100 x \frac{\text{mass formed}}{\text{maximum mass possible}} = 100 x \frac{1.48}{2.32} = 63.8\%$$

c Give two reasons why the percentage yield is less than 100%.

incomplete reaction some products escape / left on apparatus reaction may be reversible

2 Calculate the percentage yield in a reaction where 1.0 kg of iron is made from 1.6 kg of iron(III) oxide.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

moles
$$Fe_2O_3 = \frac{mass}{M_r} = \frac{1600}{160} = 10 \text{ moles}$$

moles Fe = 20 moles

mass Fe =
$$M_r$$
 x moles = 56 x 20 = 1120 g

% yield =
$$100 x \frac{\text{mass formed}}{\text{maximum mass possible}} = 100 x \frac{1000}{1120} = 89.3\%$$

© www.CHEMSHEETS.co.uk 16-Nov-2018 Chemsheets GCSE 1300

MOLES (E)

1	a 	How many moles of magnesium bromide are formed when Mg + Br₂ → MgBr₂ 3.0 moles of magnesium reacts with 2.0 moles of bromine?
	b	How many moles of ammonia are formed when 4.0 moles of $$N_2$ + 3H_2 \rightarrow 2NH_3$$ nitrogen reacts with 9.0 moles of hydrogen?
	С	How many moles of iron oxide are formed when 12.0 moles of iron $4Fe + 3O_2 \rightarrow 2Fe_2O_3$ reacts with 6.0 moles of oxygen?
2		8 g of magnesium is reacted with 4.5 g of steam. Work out which is the limiting reagent and then calculate e mass of magnesium oxide formed. $ Mg \ + \ H_2O \ \rightarrow \ MgO \ + \ H_2 $
3		0 g of calcium is reacted with 0.32 g of oxygen. Work out which is the limiting reagent and then calculate the ass of calcium oxide formed.
		2Ca + O₂ → 2CaO

1 a How many moles of magnesium bromide are formed when 3.0 moles of magnesium reacts with 2.0 moles of bromine?

$$Mg + Br_2 \rightarrow MgBr_2$$

2.0 moles of MgBr₂

b How many moles of ammonia are formed when 4.0 moles of nitrogen reacts with 9.0 moles of hydrogen?

$$N_2 + 3H_2 \rightarrow 2NH_3$$

6.0 moles of NH₃

c How many moles of iron oxide are formed when 12.0 moles of iron reacts with 6.0 moles of oxygen?

4Fe +
$$3O_2 \rightarrow 2Fe_2O_3$$

4.0 moles of Fe₂O₃

2 4.8 g of magnesium is reacted with 4.5 g of steam. Work out which is the limiting reagent and then calculate the mass of magnesium oxide formed.

$$Mg + H_2O \rightarrow MgO + H_2$$

moles Mg =
$$\frac{mass}{M_{P}} = \frac{4.8}{24} = 0.2 \text{ mol}$$

moles H₂O =
$$\frac{mass}{M_r}$$
 = $\frac{4.5}{18}$ = 0.25 mol

0.2 moles of Mg needs 0.2 moles of H₂O for all the Mg to react,

there is more than enough H_2O and so the H_2O is in excess, therefore Mg is the limiting reagent therefore 0.2 moles of Mg reacts with the 0.2 moles of H_2O , and forms 0.2 moles of MgO

mass MgO =
$$M_r$$
 x moles = $40 \times 0.2 = 8 g$

3 2.0 g of calcium is reacted with 0.32 g of oxygen. Work out which is the limiting reagent and then calculate the mass of calcium oxide formed.

moles Ca =
$$\frac{mass}{M_r}$$
 = $\frac{2.0}{40}$ = 0.05 mol

moles
$$O_2 = \frac{mass}{M_T} = \frac{0.32}{32} = 0.01 \text{ mol}$$

0.05 moles of Ca needs 0.025 moles of O_2 for all the Ca to react, but we don't have this much O_2 therefore O_2 is the limiting reagent (so the Ca is in excess and does not all react) therefore only 0.02 moles of Ca reacts with the 0.01 moles of O_2 , and forms 0.02 moles of CaO

mass CaO =
$$M_r$$
 x moles = $56 \times 0.02 = 1.12 g$